Solar Heating and Air-Conditioning of Buildings

Hans-Martin Henning

Fraunhofer Institute for Solar Energy Systems ISE, Freiburg/Germany

1st International Solar Heating & Cooling Conference, San Francisco, July 10-12, 2012

Outline

- 1. Introduction
- 2. Solar heating and air-conditioning solutions
- 3. Solar thermally driven cooling systems
- 4. Case study
- 5. Summary and conclusion

1. Introduction

- 2. Solar heating and air-conditioning solutions
- 3. Solar thermally driven cooling systems
- 4. Case study
- 5. Summary and conclusion

Reduction of energy demand

- Building envelope
- Shading
- Ventilation

Reduction of energy demand

- Building envelope
- Shading
- Ventilation

Use of heat sources/ sinks in the environment

- Ground
- Air (T, x)
- Building thermal mass

Reduction of energy demand

- Building envelope
- Shading
- Ventilation

Use of heat sources/ sinks in the environment

- Ground
- Air (T, x)
- Building thermal mass

Efficient conversion (minimize exergy losses)

- Combined heat, (cooling), power
- Minimize parasitic consumption

Reduction of energy demand

- Building envelope
- Shading
- Ventilation

(Fractional) covering of remaining demand using onsite renewable energies

- Solar thermal
- PV
- (Biomass)

Use of heat sources/ sinks in the environment

- Ground
- Air (T, x)
- Building thermal mass

Efficient conversion (minimize exergy losses)

- Combined heat, (cooling), power
- Minimize parasitic consumption

Reduction of energy demand

- Building envelope
- Shading
- Ventilation

(Fractional) covering of remaining demand using onsite renewable energies

- Solar thermal
- PV
- (Biomass)

Solutions
that maximize
indoor comfort
and minimize
energy +
cost

Use of heat sources/ sinks in the environment

- Ground
- Air (T, x)
- Building thermal mass

Efficient conversion (minimize exergy losses)

- Combined heat, (cooling), power
- Minimize parasitic consumption

Towards zero energy buildings

- Worldwide trend towards net zero energy buildings → Task 40 of the IEA Solar Heating & Cooling Programme
- Europe: new buildings have to be NZEB (net zero energy buildings) from 2020 on (public buildings 2018)

Towards zero energy buildings

- Worldwide trend towards net zero energy buildings → Task 40 of the IEA Solar Heating & Cooling Programme
- Europe: new buildings have to be NZEB (per nearly zero energy buildings)
 from 2020 on (public buildings 2018)
- "A 'nearly zero energy building' is a building that has a very high energy performance. The nearly zero or very low amount of energy required should be covered to a very significant extent by energy from renewable sources, including energy from renewable sources produced on-site or nearby."
- Solar energy is the main on-site renewable energy source to cover the remaining energy demand

- 1. Introduction
- 2. Solar heating and air-conditioning solutions
- 3. Solar thermally driven cooling systems
- 4. Case study
- 5. Summary and conclusion

Solar heating and air-conditioning – general solutions

Solar thermal: TDC + boiler

Solar thermal: TDC + boiler + vapour compr. chiller

PV: compression chiller + boiler

PV: reversible heat pump + boiler

PV: reversible heat pump only

Solar thermal	PV
 One single heat buffer for heating and cooling 	 Two stores needed: for heating and cooling case

Solar thermal	PV
 One single heat buffer for heating and cooling 	 Two stores needed: for heating and cooling case
 + High storage temperature in heat storage possible → larger storage capacity per volume for heating 	 Storage temperature limited by upper heat pump temperature > lower storage capacity per volume for heating

Solar thermal	PV
+ One single heat buffer for heating and cooling	 Two stores needed: for heating and cooling case
+ High storage temperature in heat storage possible → larger storage capacity per volume for heating	 Storage temperature limited by upper heat pump temperature > lower storage capacity per volume for heating
 Longer hydraulic pipes → higher thermal losses 	 + No hydraulic connections from solar component to technical room → reduced thermal losses

Solar thermal	PV
 One single heat buffer for heating and cooling 	 Two stores needed: for heating and cooling case
 + High storage temperature in heat storage possible → larger storage capacity per volume for heating 	 Storage temperature limited by upper heat pump temperature > lower storage capacity per volume for heating
 Longer hydraulic pipes → higher thermal losses 	+ No hydraulic connections from solar component to technical room → reduced thermal losses
 More components needed for back-up 	+ Thermodynamic machines for back-up possible

Solar thermal	PV
 One single heat buffer for heating and cooling 	 Two stores needed: for heating and cooling case
 + High storage temperature in heat storage possible → larger storage capacity per volume for heating 	 Storage temperature limited by upper heat pump temperature > lower storage capacity per volume for heating
 Longer hydraulic pipes → higher thermal losses 	+ No hydraulic connections from solar component to technical room → reduced thermal losses
 More components needed for back-up 	+ Thermodynamic machines for back-up possible

→ Decision depending on energy-cost performance; typically depending on particular boundary conditions

- Solar heating and cooling today dominated by solar thermal solution
- PV mainly applied in countries with feed-in tariff → all produced electricity fed into public grid
- This will change in future
 - Further cost reduction of PV
 - Decreasing feed-in tariffs
- If feed-in tariff lower than price for purchased electricity on-site solutions for PV will become attractive
- Medium- to longterm: BI-PV-T

Net Zero Energy Buildings – today

Net Zero Energy Buildings – tomorrow

Outline

- 1. Introduction
- 2. Solar heating and air-conditioning solutions
- 3. Solar thermally driven cooling systems
- 4. Case study
- 5. Summary and conclusion

Solar thermal cooling – basic systems and technology status

Basic systems categories

- Closed cycles (chillers): chilled water
- Open sorption cycles: direct treatment of fresh air (temperature, humidity)

Technical status

- Mature components available (both solar and refrigeration, A/C)
- Main progress made in last decade
 - Small scale heat driven chillers now available
 - Increasing number of high efficient double and recently triple effect absorption chillers
 - Development of systems using single-axis tracking solar collectors
- Main technical shortcomings are still on system level
 - Energy efficient heat rejection (cooling tower)
 - Energy management
 - Bottleneck: good trained technical staff almost not available

Energy performance – electric COP

Energy performance – electric COP

Energy performance – electric COP

Recently large and very large installations (examples)

CGD Bank Headquarter
Lisbon, Portugal
1560 m² collector area
400 kW absorption
chiller

Source: SOLID, Graz/Austria

FESTO Factory

Berkheim, Germany

1218 m² collector area

1.05 MW (3 adsorption chillers)

Source: Paradigma, Festo

United World College (UWC) (in planning)

Singapore

3900 m² collector area

1.47 MW absorption chiller

Source: SOLID, Graz/Austria

- 1. Introduction
- 2. Solar heating and air-conditioning solutions
- 3. Solar thermally driven cooling systems
- 4. Case study
- 5. Summary and conclusion

Case study

- Load: Hotel (total area 3050 m²; 4 zones: guest rooms, lobby+floors, restaurant, kitchen)
- Annual simulation based on hourly load and meteo data (Meteonorm) ->
 hourly load file for various locations
- Components (parameter variation)
 - Advanced flat plate collector (150 m² ... 750 m²)
 - Heat buffer storage (30 litre/m² ... 80 litre/m²)
 - Thermally driven chiller (average COP_{thermal} 0.68) (0 kW ... 60 kW)
 - Cooling tower with a nominal COP of 25 (→ 25 kWh of rejected heat per 1 kWh of consumed electricity)
 - Backup vapour compression chiller with average EER of 3.0
 - Backup natural gas boiler with efficiency of 0.9

Simulation approach

Investigated locations

Needed collector area for a total solar fraction of 60 %

Final energy saving per collector area ($f_{solar,tot} = 60 \%$)

First results

- Using a thermally driven chiller is mainly interesting in cooling dominated climates → significant increase in solar fraction and good exploitation of the solar collector
- Small thermally driven chiller seems sensible → cover part of the base load, conventional chiller for peak load (TDC capacity about 25-30 % of peak cooling load covers > 50 % of annual cooling)
- Solar fraction and energy saving per collector are competing design parameters → compromise needed
- In particular for cooling electricity needs can not be neglected (heat rejection)
- Primary energy and cost balance leads to system optimization in comparsion to conventional reference

Primary energy balance – conventional reference

Primary energy balance – solar heating and cooling

Example Malta – fractional primary energy saving

Example Malta – primary energy balance

Example Malta – investment (first cost) (100 % = ref.)

Example Malta: life cycle cost (LCC) (100 % = ref.)

- 1. Introduction
- 2. Solar heating and air-conditioning solutions
- 3. Thermally driven cooling systems
- 4. Case study
- 5. Summary and conclusion

Summary, conclusions

- Solar heating and air-conditioning (and domestic hot water)
- Climates with high cooling loads
- Open cooling cycles for dehumidification of ventilation air → in particular for sites with high latent loads
- Examples with high primary energy saving and lower life cycle cost compared to standard solutions possible
- Main challenge: high quality systems (→ IEA SHC Task 48 "Quality Assurance and Support Measures for Solar Cooling ")
- Provide solutions, not technologies
- Large investment (like for most RE) → supporting programmes have to address this
- Future: also PV solutions → system approach needed

Thank you for your attention

Fraunhofer-Institut für Solare Energiesysteme ISE

Hans-Martin Henning

www.ise.fraunhofer.de hans-martin.henning@ise.fraunhofer.de