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Holistic approach to energy efficient buildings
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Towards zero energy buildings

m Worldwide trend towards net zero energy buildings = Task 40 of the IEA
Solar Heating & Cooling Programme

m Europe: new buildings have to be NZEB (net zero energy buildings)
from 2020 on (public buildings 2018)
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Towards zero energy buildings

m Worldwide trend towards net zero energy buildings = Task 40 of the IEA
Solar Heating & Cooling Programme

® Europe: new buildings have to be NZEB (pef nearly zero energy buildings)
from 2020 on (public buildings 2018)

m “A 'nearly zero energy building’ is a building that has a very high energy
performance. The nearly zero or very low amount of energy required
should be covered to a very significant extent by energy from renewable
sources, including energy from renewable sources produced on-site or
nearby.”

m Solar energy is the main on-site renewable energy source to cover the
remaining energy demand
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Solar heating and air-conditioning — general solutions
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Solar thermal: TDC + boiler
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Solar thermal: TDC + boiler + vapour compr. chiller
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PV: compression chiller + boiler
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PV: reversible heat pump + boiler
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PV: reversible heat pump only
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Solar heating & cooling: thermal versus PV

Solar thermal

+ One single heat buffer for — Two stores needed: for heating
heating and cooling and cooling case
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Solar heating & cooling: thermal versus PV

Solar thermal

+ One single heat buffer for — Two stores needed: for heating
heating and cooling and cooling case

+ High storage temperature in heat - Storage temperature limited by
storage possible = larger storage upper heat pump temperature =
capacity per volume for heating lower storage capacity per

volume for heating

— Longer hydraulic pipes = higher + No hydraulic connections from
thermal losses solar component to technical
room =» reduced thermal losses

— More components needed for + Thermodynamic machines for
back-up back-up possible

=> Decision depending on energy-cost performance; typically depending on
particular boundary conditions
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Solar heating & cooling: thermal versus PV

m Solar heating and cooling today dominated by solar thermal solution

m PV mainly applied in countries with feed-in tariff = all produced
electricity fed into public grid

m This will change in future
Further cost reduction of PV

Decreasing feed-in tariffs

m If feed-in tariff lower than price for purchased electricity on-site solutions
for PV will become attractive

® Medium- to longterm: BI-PV-T
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Net Zero Energy Buildings - today
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Net Zero Energy Buildings — tomorrow
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Solar thermal cooling - basic systems and technology
status

solar thermal
O — system

| chilled water
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conditioned air

Basic systems categories
B Closed cycles (chillers): chilled water

B Open sorption cycles: direct treatment of fresh air (temperature,
humidity)
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Technical status

B Mature components available (both solar and refrigeration, A/C)

B Main progress made in last decade
Small scale heat driven chillers now available

Increasing number of high efficient double and - recently — triple
effect absorption chillers

Development of systems using single-axis tracking solar collectors

B Main technical shortcomings are still on system level
Energy efficient heat rejection (cooling tower)
Energy management

Bottleneck: good trained technical staff almost not available
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Energy performance - electric COP

Electric COP
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Energy performance - electric COP

4 - . Best systems e
in IEA SHC
12 Task 38

Electric COP

\

© Fraunhofer ISE % FraunhOfer
ISE



Energy performance - electric COP
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Recently large and very large installations (examples)

CGD Bank Headquarter

Lisbon, Portugal
1560 m? collector area

400 kW absorption
chiller

Source: SOLID, Graz/Austria

FESTO Factory

Berkheim, Germany
1218 m? collector area

1.05 MW (3 adsorption
chillers)

Source: Paradigma, Festo

United World College
(UWCQ) (in planning)

Singapore

3900 m2 collector area

1.47 MW absorption
chiller

Source: SOLID, Graz/Austria
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Case study

B Load: Hotel (total area 3050 m?; 4 zones: guest rooms, lobby+floors,
restaurant, kitchen)

B Annual simulation based on hourly load and meteo data (Meteonorm) =
hourly load file for various locations

B Components (parameter variation)
Advanced flat plate collector (150 m2 ... 750 m?)
Heat buffer storage (30 litre/m? ... 80 litre/m?)

Thermally driven chiller (average COP; o;ma 0-68) (0 kW ... 60 kW)

Cooling tower with a nominal COP of 25 (= 25 kWh of rejected heat
per 1 kWh of consumed electricity)

Backup vapour compression chiller with average EER of 3.0
Backup natural gas boiler with efficiency of 0.9
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Simulation approach

B Basic building data

B Weekly/monthly schedules B Select system type
DHW ® Define key component
Occupation parameters
Internal loads ®m Define limits for parameter
Ventilation rate variation

Meteo Load
data of generator
site
B Meteo-load file B For each system
® Hourly values of meteo and configuration
load data Annual energy balance

Annual cost balance
Comparsion to
reference (energy, cost)
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Investigated locations
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Solar fraction for final energy (heating, cooling, DHW)
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Final energy saving per collector area
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Final energy saving per collector area

| i i i i L  E

L

D I

Eﬁnal,saVed, kWh/m?

200

TDC size, kW

=0 15 —30 —-45 —+-60

150 350 550 750

collector area, m?

\

~ Fraunhofer
ISE



Solar fraction for final energy (heating, cooling, DHW)
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Final energy saving per collector area
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Final energy saving per collector area
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Needed collector area for a total solar fraction of 60 %
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Final energy saving per collector area (f,,, ;oc: = 60 %)
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First results

B Using a thermally driven chiller is mainly interesting in cooling
dominated climates = significant increase in solar fraction and good
exploitation of the solar collector

® Small thermally driven chiller seems sensible =» cover part of the base
load, conventional chiller for peak load (TDC capacity about 25-30 % of
peak cooling load covers > 50 % of annual cooling)

B Solar fraction and energy saving per collector are competing design
parameters = compromise needed

B In particular for cooling electricity needs can not be neglected (heat
rejection)

=» Primary energy and cost balance leads to system optimization in
comparsion to conventional reference
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Primary energy balance - conventional reference
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Primary energy balance - solar heating and cooling
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Example Malta - fractional primary energy saving
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Example Malta - primary energy balance
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Example Malta — investment (first cost) (100 % = ref.)
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Example Malta: life cycle cost (LCC) (100 % = ref.)
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Summary, conclusions

B Solar heating and air-conditioning (and domestic hot water)
Climates with high cooling loads

B Open cooling cycles for dehumidification of ventilation air = in
particular for sites with high latent loads

® Examples with high primary energy saving and lower life cycle cost
compared to standard solutions possible

B Main challenge: high quality systems (= IEA SHC Task 48 ,, Quality
Assurance and Support Measures for Solar Cooling “)

M Provide solutions, not technologies

® Large investment (like for most RE) = supporting programmes have to
address this

M Future: also PV solutions =» system approach needed
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Thank you for your attention

Fraunhofer-Institut fur Solare Energiesysteme ISE

Hans-Martin Henning

www.ise.fraunhofer.de
hans-martin.henning@ise.fraunhofer.de
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