

Task 48 - Overview on heat rejection systems

Roberto Fedrizzi

Aim of the work

Looking to the solar cooling system as a whole, the heat rejection system is responsible for:

- a relevant part of the investment costs
- is the major responsible for electricity consumptions (around 50%)
- in some cases they are responsible also for a relevant water consumption

As such, the heat rejection system is a limiting factors to the diffusion of solar cooling systems on the market.

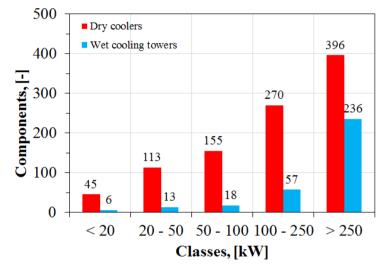
A better insight of market-available variants is therefore desiderable

http://task48.iea-shc.org/publications

Aim of the work

- A market survey has been conducted on more than 1300 products by using free-available technical documentation of 23 manufacturers
- A database of dry coolers (DCs) and wet cooling towers (WCTs) has been created according the following criteria:
 - o general characteristics
 - o rated performance ⁽¹⁾
 - o fan parameters
 - o coil parameters
 - o catalog cost

DCs: $T_{w,in}=40^{\circ}C$, $T_{w,out}=35^{\circ}C$, $T_{db}=25^{\circ}C$ [ENV1048:1995] WCTs: $T_{w,in}=95^{\circ}F$ (35°C), $T_{w,out}=85^{\circ}F$ (29.4°C), $T_{wb}=78^{\circ}F$ (25.5°C) [CTI STD-203:2005]

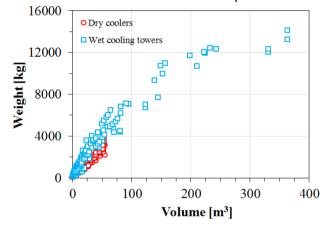

Shanghai, 27th March 2015 - Chinese Solar Cooling Conference

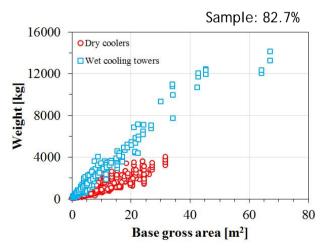
Aim of the work

The database comprises heat rejection components from **small to large capacities** adopted in residential, industrial or tertiary applications:

- Rated performance are available in the database
- Off-design performance is calculation based on correction factors provided by the manufacturers (thermal performance) and on simulation models (electric performance)

Technical features: sizes


Weight-to-volume ratio:

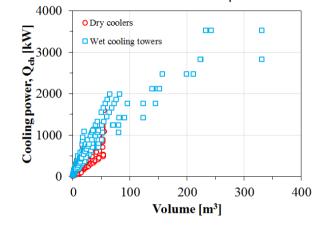

DCs: 45-126 kg/m³ WCTs: 41-101 kg/m³

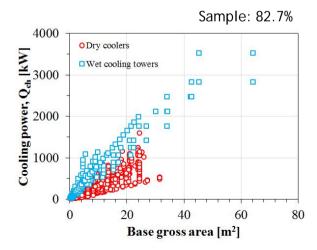
• Weight-to-base gross area ratio:

DCs: 97-185 kg/m² WCTs: 208-376 kg/m²

Sample: 82.7%

Technical features: sizes


Chilling power-to-volume ratio:


DCs: 10-40 kW/m³ WCTs: 8-47 kW/m³

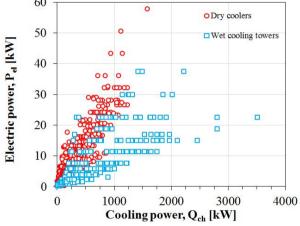
Chilling power-to-base gross area ratio:

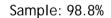
DCs: 13-80 kW/m² WCTs: 60-163 kW/m²

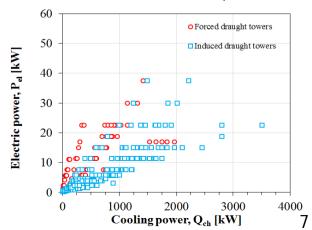
Sample: 82.7%

Technical features: thermal & electrical power Sample: 90.1%

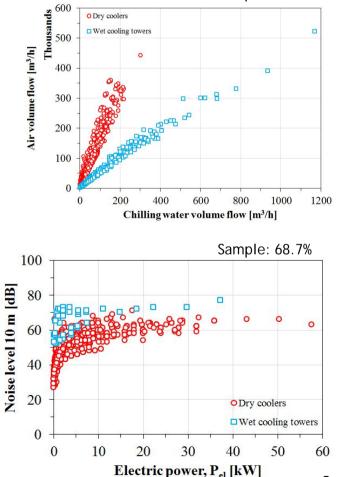
Electrical-to-thermal power ratio:


DCs: 0.013-0.091 kW_{el}/kW_{ch} WCTs: 0.005-0.060 kW_{el}/kW_{ch} Induced draught:


0.005-0.025 kW_{el}/kW_{ch} forced draught towers:


0.010-0.060 kW_{el}/kW_{ch}

 Literature: Eicher et al., 2012; Saidi et al., 2011 (quantities in kW_{el}/kW_{ch}); Solarrück
DCs: 0.045, WTCs: 0.018, induced: 0.007, forced: 0.02

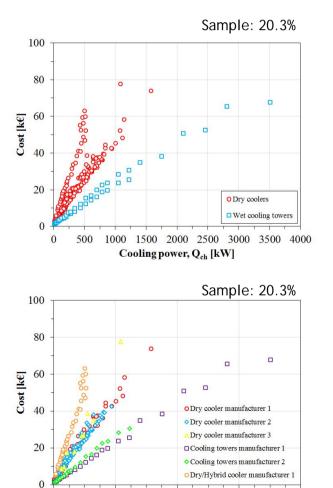


Technical features: mass flow rate & noise level Sample: 95.3% O Dry coolers

Air-to-chilling water mass flow rate ratio:

> **DCs**: 1.7x10³ WCTs: 0.49x10³

Noise level: values measured at a distance of 10 m



Economic features

Investment costs-to-cooling power ratio:

DCs: 49-107 €/kW_{ch} WCTs: 22-27 €/kW_{ch}

2000

Cooling power, Q_{ch} [kW]

3000

4000

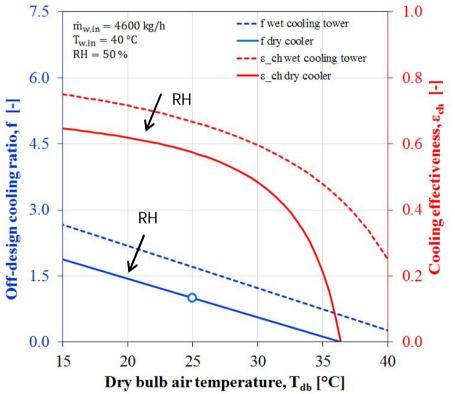
9

0

1000

Market analysis - Conclusions

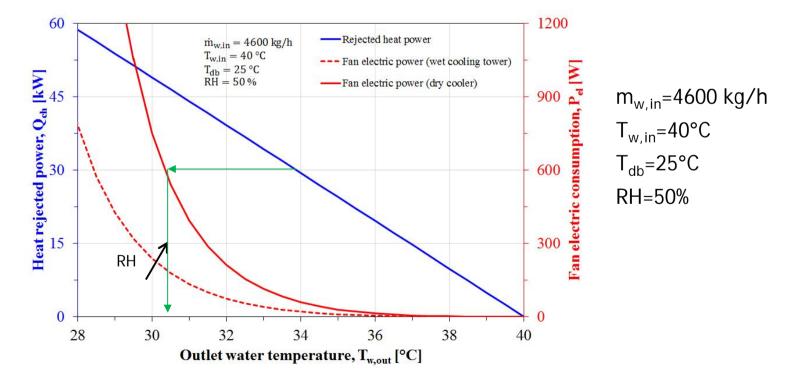
- WTCs can reject more thermal power than DCs under the same climatic and operation conditions with a lower average specific consumption (0.033 kW_{el}/kW_{ch}) compared to DCs (0.017 kW_{el}/kW_{ch})
- WTCs have also a lower investment cost even though are characterized by higher costs during operation in relation to fresh water consumption and legionella prevention measures: their adoption is in some cases can be discouraged (i.e. Middle East)


Climatic suitability

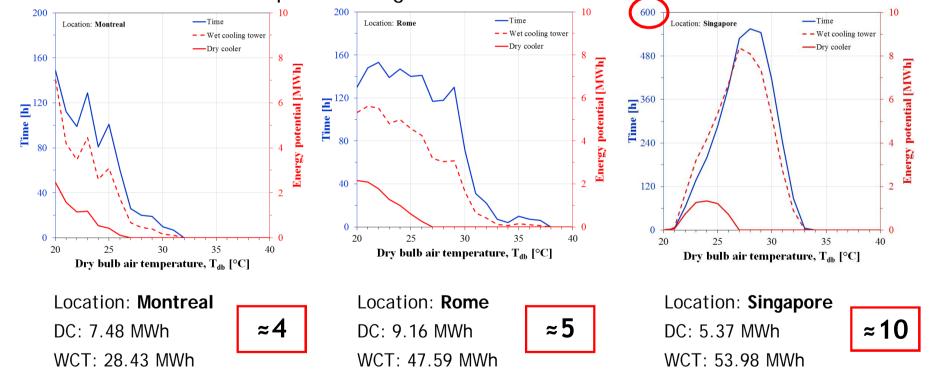
- In order to compare between DCs and WCTs, two figures of merit have been defined:
- Cooling performance factor

$$f = \frac{Q_{ch,actual}}{Q_{ch,rated}}$$

Cooling efficiency


$$\varepsilon_{ch} = \frac{\Delta T_w}{T_{w,in} - T_{sink}}$$

Climatic suitability


• Fan electric consumption is key in any air-based heat rejection component:

Climatic suitability

 Heat rejection potential quantifies the amount of heat that can be dissipated in a given location

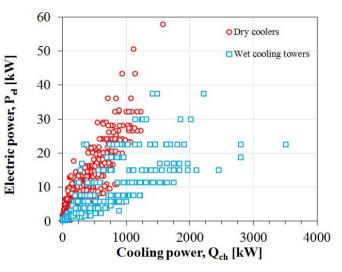
 $T_{w,in}=32^{\circ}C | T_{w,out}=27^{\circ}C$

13

Shanghai, 27th March 2015 - Chinese Solar Cooling Conference

HR systems operation

- A number of standards have been classified for EU, USA and Australia
- Practical experience has been collected for 9 DC heat rejection systems within the Solarück project:
- Practical hints for installation and maintenance
- Practical hints for control


Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

HR systems operation

Control:

- Attention to control of the fans
- Heat rejection control has to consider the pumps as part of the system itself
- Water spraying has to be treated carefully to avoid blockage and waste of water → alternate spraying only when it is needed
- Control has to consider the building energy use

Thank you for your attention

roberto.fedrizzi@eurac.edu

www.eurac.edu