IEA SHC TASK 48 5TH MEETING
FRAUNHOFER-INSTITUT FÜR SOLARE ENERGIESYSTEME ISE

FIRST MONITORING RESULTS OF A NEW COMPACT SOLAR AIR CONDITIONER BASED ON FIXED AND COOLED ADSORPTION BEDS

Pietro Finocchiaro, Marco Beccali

DEIM - Dipartimento di Energia, ingegneria dell’Informazione, e modelli Matematici
In DEC systems desiccant rotors are commonly used.

The use of desiccant rotors implies that condensation heat is rejected into the processed air and has to be removed by means of the indirect evaporative cooling process.

System based on simultaneous adsorption and desorption processes.

The rotating sensible heat exchanger has to carry over two tasks:

- Heat recovery
- Cold production

Enthalpy difference of the DEC AHU strongly dependent on the efficiency of sensible heat exchanger and return humidifier.
Furthermore:

- An increase of the desiccant material temperature is responsible also for higher regeneration temperatures required.
- Desiccant rotors are built to host a relatively low mass of adsorbent.
- Energy storing is commonly based on the mass and the heat capacity of the fluid used for the regeneration of the desiccant.
- The use of hot air as regeneration fluid is suitable only with systems without storage.
INNOVATIVE FIXED AND COOLED ADSORPTION BED

- The component is a fin and tube heat exchanger commonly used in the air conditioning sector, wherein the spaces between the fins are filled with silica gel grains.
- The developed component allows a simultaneous mass transfer between the moist air and the adsorbent media and heat exchange between the air and the water flowing into the heat exchanger tubes.
- The cooling of the desiccant material during the adsorption process allows high dehumidification performances of the desiccant bed and in general better overall energy performances of the system.
- Water temperatures required can be easily achieved with a cooling tower;
- High amount of silica gel can be used;
- Adsorption and desorption processes happen in different times;
- Solar energy can be efficiently stored in the desiccant in terms of adsorption capacity which can be used later when regeneration heat is not available, strongly reducing the necessity for thermal storage;
Equilibrium isotherm of adsorption for silica gel RD

- The higher the temperature of the desiccant the lower the adsorption capacity
- During adsorption in desiccant rotors, air temperature increases and relative humidity strongly decreases
During adsorption in adsorption cooled bed, air temperature can slightly decrease and relative humidity ranges from 15% at the beginning of the process to 40% at the end.

Average adsorption bed humidity at equilibrium is much higher than for desiccant rotors.
COMPARISON OF THE ADSORPTION PROCESSES

Dehumidification by desiccant rotor
- Adsorption process realized by means of desiccant rotors is a quasi–isoenthalpic transformation
- It presents the disadvantage of causing a temperature increase of the desiccant material
- No enthalpy difference between in and out

Dehumidification by fixed and cooled desiccant bed
- Condensation heat can be rejected
- The thermodynamic process causes an enthalpy difference between inlet and outlet air conditions
- In general, the temperature of air exiting the adsorption bed can be lower than the one of incoming air
- Downstream indirect evaporative cooling process can be operated at lower temperature
SYSTEM DESIGN SPECIFICATIONS

- Designed for small scale applications of air ventilation, dehumidification and cooling
- Based on fixed and cooled adsorption beds and high efficient evaporative cooling concepts
- Use of solar air collectors
- Minimization of parasitic energy consumption
- Solar autonomous, no use of auxiliary energy source
- System should be compact, all in one, reliable, and easy to install
The new compact system developed is based on the use of two fixed packed desiccant beds of silica gel operating in a batch process and cooled by cooling tower, and two wet wet heat exchangers connected in series.

- Adsorption bed designed to be operated in “low flow” mode (air velocity = 0.16 m/s)
- A portion of the primary air flow rate exiting the wet heat exchanger is drawn into the secondary side
DESCRIPTION OF THE NEW DEC SYSTEM

- Main electricity consumptions of the system are related to the use of three fans (solar, main, cooling tower) and two pumps (wet HX, cooling tower)
- A system of air valves provides the switch from one bed to the other in order to guarantee a continuous dehumidification process
- No auxiliary device included

<table>
<thead>
<tr>
<th>Description</th>
<th>x</th>
<th>T</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Outside air</td>
<td>16.0</td>
<td>36.0</td>
<td>77.2</td>
</tr>
<tr>
<td>2 Adsorption bed</td>
<td>6.0</td>
<td>34.0</td>
<td>49.5</td>
</tr>
<tr>
<td>3 Mixing</td>
<td>9.6</td>
<td>28.3</td>
<td>52.8</td>
</tr>
<tr>
<td>4 Wet HX1 + HX2</td>
<td>9.6</td>
<td>19.0</td>
<td>43.3</td>
</tr>
<tr>
<td>Building</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Return air</td>
<td>11.0</td>
<td>26.0</td>
<td>54.1</td>
</tr>
<tr>
<td>Secondary air in wet heat exchangers</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Wet HX1 + HX2</td>
<td>9.6</td>
<td>19.0</td>
<td>43.3</td>
</tr>
<tr>
<td>5 Humidification</td>
<td>10.8</td>
<td>17.0</td>
<td>44.4</td>
</tr>
<tr>
<td>Cooling tower</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Inlet cooling</td>
<td>19.8</td>
<td>28.0</td>
<td>78.7</td>
</tr>
<tr>
<td>7 Cooling tower</td>
<td>25.5</td>
<td>30.0</td>
<td>95.3</td>
</tr>
<tr>
<td>Regeneration air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Outside air</td>
<td>16.0</td>
<td>36.0</td>
<td>77.2</td>
</tr>
<tr>
<td>8 Solar collector</td>
<td>16.0</td>
<td>60.0</td>
<td>102.0</td>
</tr>
<tr>
<td>9 Desorption</td>
<td>24</td>
<td>40</td>
<td>101.96</td>
</tr>
</tbody>
</table>
REALIZED PROTOTYPE

- Solar air collector area: (1x2) m²
- Two ADS beds, with 15 kg of silica gel each
- One wet HX
- Total flow rate: 500 m³/h
- Max electric power: 0.2 kW
- Max cooling power: 2.2 kW (at $T_{\text{outside}} = 35^\circ$C, $RH_{\text{outside}} = 50\%$, $T_{\text{bui}} = 27^\circ$C, $RH_{\text{bui}} = 50\%$)
- Total weight ≈ 150 kg

International PCT pending
MONITORING AND CONTROL SYSTEM

- **five** HIH – 4000 series Honeywell **humidity sensors** with accuracy ± 3.5%
- **nine** integrated-circuit **temperature sensors**, type LM35CAZ by National Semiconductor, accuracy of ±0.5°C positioned upstream and downstream of the main components
- flow rate were measured using a anemometer with a accuracy of ±3% over the full scale
- solar radiation was measured using a **pyranometer** (1st class, ISO 9060) installed on the collector plane
- electricity consumption was measured using a DC meter with ±0.5% accuracy
- a Microprocessor **Arduino Mega 6025** in combination with **Labview** was used as control and acquisition unit.
PERFORMANCE INDICATORS USED

\[MR = \frac{\dot{m}_{\text{outside}}}{(\dot{m}_{\text{supply}} + \dot{m}_{\text{outside}})} \]

\[\text{Cooling energy}_{\text{ADS BED}} = \dot{m}_{\text{outside}}(h_1 - h_2) \]

\[\text{Cooling energy}_{\text{WET HX}} = (\dot{m}_{\text{outside}} + \dot{m}_{\text{supply}})(h_3 - h_4) \]

\[\text{Total cooling energy delivered} = [\dot{m}_{\text{outside}}(h_1 - h_2) + (\dot{m}_{\text{outside}} + \dot{m}_{\text{supply}})(h_3 - h_4)](1 - MR) \]

\[EER = \frac{\text{Total cooling energy delivered}}{\text{Total electricity consumed}} \]

\[\text{COP}_{\text{th}} = \frac{\text{Total cooling energy delivered}}{\text{Solar Heat delivered}} \]

Mass flow ratio between secondary and primary side of wet HX

Cooling power due to the handling of the outside air included
First tests were aimed to the verification of the control and monitoring system and to the tuning of components started in June of this year.

After the this first phase, monitoring could start at the 2nd week of July.

Lack of monitoring data caused by interruptions on data transmission and stops.

Globally about 30 days of monitoring data are available with a total amount of 240 operation hours.

A selection of one week operation data with a total amount of 54 operation hours was carried out.
HUMIDITY RATIO VALUES

5th day of the selected week

<table>
<thead>
<tr>
<th>T outside max °C</th>
<th>x outside max g/kg</th>
<th>T outside average °C</th>
<th>x outside average g/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.3</td>
<td>14.4</td>
<td>29.3</td>
<td>13.4</td>
</tr>
</tbody>
</table>

Humidity ratio difference about 5 g/kg

System operating on one bed for about 2 hours
TEMPERATURE VALUES

5th day of the selected week

<table>
<thead>
<tr>
<th>T outside max °C</th>
<th>T outside average °C</th>
<th>T outside max g/kg</th>
<th>T outside average g/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.3</td>
<td>29.3</td>
<td>14.4</td>
<td>13.4</td>
</tr>
</tbody>
</table>

temperature difference about 5 °C

Pump switching on and off
Outlet temperature of the air coming out from the bed

<table>
<thead>
<tr>
<th>T outside max</th>
<th>x outside max</th>
<th>T outside average</th>
<th>x outside average</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.3 °C</td>
<td>14.4 g/kg</td>
<td>29.3 °C</td>
<td>13.4 g/kg</td>
</tr>
</tbody>
</table>
MAIN ENERGY PERFORMANCES

5th day of the selected week

- Cooling power between 1 and 1,2 kW
- Average EER = 6
- Max parasitic power 200 W
- Average Thermal COP = 1,2

<table>
<thead>
<tr>
<th>T outside max °C</th>
<th>x outside max g/kg</th>
<th>T outside average °C</th>
<th>x outside average g/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.3</td>
<td>14.4</td>
<td>29.3</td>
<td>13.4</td>
</tr>
</tbody>
</table>
ELECTRICITY CONSUMPTION DISTRIBUTION

5th day of the selected week

- Main fan: 0.80; 62%
- Solar fan: 0.18; 14%
- Other: 0.03; 2%
- Wet HX pump: 0.10; 8%
- Cooling tower pump: 0.18; 14%

Outside average temperature: 29.3°C
Outside average humidity: 13.4 g/kg

Task 48
HUMIDITY RATIO VALUES

System could provide dehumidification for several hours after the sunset.

6th day of the selected week

<table>
<thead>
<tr>
<th>T outside max °C</th>
<th>x outside max g/kg</th>
<th>T outside average °C</th>
<th>x outside average g/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.1</td>
<td>15.7</td>
<td>26.0</td>
<td>14.8</td>
</tr>
</tbody>
</table>

Operation time from 2:00 pm to 10:00 pm.
DAILY WEATHER CONDITIONS AND PERFORMANCE INDICATORS - ONE WEEK OF OPERATION

71%
CONCLUSIONS

- An innovative concept of a compact desiccant cooling system for small scale applications was developed
- The core component is a fixed and cooled adsorption bed which permits to dehumidify and cool the air
- Low temperature required for the regeneration of the desiccant material (max 60°C), standard solar flat plate air collector can be used
- A prototype for residential application was realized and tested
- Monitoring results show the validity of the proposed solution and good performances both in terms of building temperature and humidity control
- EER and thermal COP values are also encouraging, but optimizations are still possible
- The cooling power delivered to the building could be increased by the use of two wet heat exchangers connected in series instead of only one
- Electricity consumptions could be reduced by a redesign of the air channels
CONCLUSIONS

- The opportunity to use the desiccant bed as latent storage permits to supply cooling energy to the building also several hours after the sunset.
- Control of the dehumidification process acting on the temperature of the bed is possible.
- The fact that adsorption and desorption processes happen in different times can be considered an advantage for the control of the dehumidification process.
Thank you for your attention!