Main presentation, part A (3 h, about 60 slides)

- 1. Load concepts and (solar) air-conditioning
- 2. The cold production sub-system
 - a. Chillers (vapour compression, absorption and adsorption), including basics on chiller characterisation (dynamic test approaches for seasonal performance assessment)
 - b. Desiccant cooling systems
 - c. Heat rejection equipment
- 3. The heat production (solar) system (collectors and storage), including state of the art on concentrating and new collectors
- 4. System configurations (solar assisted and solar autonomous systems) and control (including advanced control with self-detection of faults and malfunctioning). Solar district cooling.
- 5. Design approaches
 - a. Preliminary design aspects, backup sources and efficiency benchmarks
 - b. Dimensioning a solar cooling system (chiller size, collector area, storage volume)
 - c. Quality assurance and lessons learned aspects

Quality Assurance & Support Measures for Solar Cooling Systems

1. Load concepts and (solar) airconditioning

The human comfort target

- Thermal comfort is influenced by
 - Air temperature
 - Air humidity
 - Surface temperature
 - Air velocity
 - Clothing thickness
 - Activity/ exertion
- Aim to remove heat to keep temperature and humidity inside the comfort window

Air-conditioning loads in summer

Sensible heat gains: lead to an increase in temperature Latent heat gains: lead to an increase in humidity

Solar Cooling Systems

Matching of demand with solar availability

Source of Heat	Heat Type (sensible/latent)	Potential Magnitude	Correlation with Solar Availability	
Sun shining through the windows	S	M/H	++	
Heat conducting through the walls and windows	S	L	+	
Computers, photocopiers, lights and other machines	S	Μ	+/-	
People	S & L	M/L	+/-	
Fresh air (infiltration or controlled ventilation)	S & L	н	++/-	
Cooking	S & L	?	?	

Hours of occupancy must also be considered

Removing heat and humidity

Electricity driven vapour compression cooling

- Cold production by chillers, package units or split system airconditioners
- Cold transported to the room by air, water or refrigerant
- Room air cooled below its dew-point to remove moisture

Thermally activated cooling

- Cold production by absorption chillers, adsorption chillers with cold transportation by chilled water
- Dehumidification by cooling below dew point or by desiccant drying

Quality Assurance & Support Measures for Solar Cooling Systems

Solar PV or Solar thermal

2. The cold production sub-system

 a. Chillers (vapour compression, absorption and adsorption), including basics on chiller characterisation (dynamic test approaches for seasonal performance assessment)

Refrigeration principles: Vapour compression

Quality Assurance & Support Measures for Solar Cooling Systems

Absorption refrigeration principle

SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY

Quality Assurance & Support Measures 1 Solar Cooling Systems

Large scale LiBr/ water absorption chillers

(Mature cost-effective technology, chilled water output)

Chiller	Coefficient of Performance (COP)	Required Heat Source Temperature
Single Stage	~0.7	80-120°C
Two Stage	~1.3	160-180°C
Three Stage	~1.8	200-240°C

New developments

- Triple effect absorption chillers
- Double effect gas-fired with single effect solar boost
- Air cooled LiBr/H₂O absorption chillers
- Low temperature LiBr/brine absorption chillers

Solar Cooling Systems

ADsorption machine schematic

ADsorption refrigeration batch process

- Typical solid sorbent/ refrigerant pairs
 - Silicagel/water

Solar Cooling Systems

Capacity and COP variation with driving

temperature (single effect absorption chiller)

Solar Cooling Systems

Capacity variation with heat rejection temperature (adsorption chiller)

17

Some suppliers

Quality Assurance & Support Measures for Solar Cooling Systems

			10 kW	50 kW	100 kW	150	kW 20	0 kW	250 kW	300 kV	V October 29,2012
			••							cea	- ines -
lion		SorTech AG									INSTITUT NATIONAL DE L'ENERGIE SOLAIRE
sopr	*)	SHUANGLIANG	•								
aD		ΜΔΥΕΚΔΨΛ									> 430 kW
			•				•				
		Green Advorption Chiller					•		•		422 > 528 kW
				•	•	•			•	(500 > 1 000 kW
		EAM	• •		•						
		SOLARICE		•							
		(PÖNK)									
5	*2	BROAD GROUP 匠大集团								(512 > 10 230 kW 582 > 11 630 kW
oprti	*>	HviN	• • •				•	•			350 > 2 900 kW
aBs	*>	SHUANGLIANG								(350 > 4 650 kW 350 > 5 230 kW
Iriver		BY JOHNSON CONTROLS									422 > 4 842 kW
ater d	۲	THEFTAX	•		•		\bigcirc	•	0	(331 > 6 400 kW 359 > 7 000 kW
ŝ		EBARA						•			404 > 1 266 kW
		HITACHI Inspire the Next							\bigcirc	(703 > 1 582 kW 422 > 4 396 kW
		Kawasaki									510 > 1 090 kW
		SAKURA	••••								316 > 1 054 kW
		SANYO									316 > 1 846 kW
		YAZAKI	• •								
	*)	BROAD GROUP 远大集团								(582 > 11 630 kW 582 > 11 630 kW
rtion	*2	SHUANGLIANG									350 > 4 650 kW 350 > 6 980 kW
Steam driven aBsop										(1 055 > 2 373 kW
	۲	THEFTAX								(464 > 7 175 kW
		EBARA								(528 > 2 462 kW
		HITACHI Inspire the Next							0	(703 > 3 517 kW 422 > 4 396 kW
		SANYO									352 > 2 462 kW 352 > 5 275 kW
	-								-		

● Simple effect ○ Double effect ○ Triple effect

Comparing ad- and ab-sorption chillers

Adsorption generally has lower COP, larger size and higher cost, but

- Does not require a wet cooling tower
- Does not require management of solution chemistry
- Can run off a lower temperature heat source

2. The cold production sub-system

b. Desiccant cooling systems

DEC systems (desiccant and evaporative cooling)

- DEC systems are used for the direct treatment of fresh air
- Process consists of a combination of evaporative cooling and dehumidification through hygroscopic materials
 - Liquid desiccant
 - Solid desiccant (most common)
- The potential of evaporative cooling is increased by the process of dehumidification of the air
 - Evaporative cooling available irrespective of solar availability
- A DEC system can be incorporated into a conventional air handling unit with or without a conventional compression chiller

Solar DEC system schematic

Desiccant wheels

- Solid desiccant wheels are common in silica gel and zeolite
 - DRI/ Bryair
 - Seibu-Gieken
 - NovelAire
 - Klingenburg
 - Proflute
 - Desiccant systems
 - Munters
 - 50:50 process:regeneration air for high dehumidification/ low temperature
 - 75:25 process:regeneration air for high capacity/ high COP

Desiccant cooling system performance

Increasing temperature

- Increasing specific cooling capacity
- Lower temperature supply air
- □ Lower COP (due to lower fraction of passive cooling)

Solar Cooling Systems

Comparing desiccant cooling with absorption cooling

DEC systems are

- Good for removing latent heat load (but may not achieve low enough supply air temperatures on hot days)
- Can operate over longer time periods in evaporative cooling only mode
- No cooling tower required (but does require water)
- Can use low temperature heat sources
- Efficiency is application specific
 - High COP (~1.0) when used as an advanced heat recovery unit for supply of required ventilation fresh air (recovering coolth from indoor air)
 - Low COP (~0.5) when supplying fresh air above that required for ventilation
- Easy to maintain, common AHU components
- Generally more cost effective

DEC system – new developments

- Cycles with indirect evaporative coolers
- New desiccant materials
 - Polymers
 - Impregnation with metal halides
- Cooled (non-adiabatic) desiccant coated heat exchangers
 - Simultaneous sensible and latent heat removal

DEC systems with liquid desiccants

Aqueous LiCl or CaCl₂ solutions as liquid desiccant.

Advantages:

- Possibility of loss free storage of strong solution at high storage density
- High dehumidification potential

Disadvantages:

- Problems with corrosion
- High costs especially for LiCl
- Possibility of liquid carryover

Solar Cooling Systems

Some liquid desiccant system suppliers

AIL Research (35 - 93 kW)

L-DSC Technology (200 - 350 kW)

Imtech Drygenic (Kathabar, 30 - 70 kW)

Menerga (20 - 100 kW)

SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY

Quality Assurance & Support Measures for Solar Cooling Systems

2. The cold production sub-system

c. Heat rejection equipment

Wet Cooling Tower

- Efficient
- Water required
- Maintenance (chemical treatment, registration)
- Not available in small sizes
- Frost protection

Dry Cooler

- No water required
 - Although sprays can be used for infrequent extreme conditions
 - Higher/ more variable heat rejection temperature
- High parasitic power consumption

Evaporative Hybrid Cooler

- Efficient but will still require maintenance
 - Some variants
 - Can operate without water
 for some parts of the year
 - Evaporative curtain

Ground Source Heat Exchange

- Horizontal or vertical (reduced footprint and seasonal temperature variation)
- Efficient
- No water consumption
- Low parasitic power consumption
- **Expensive**

The heat rejection method matters

chillii® PSC 12 - Cooling Capacity - Fancoils (12 - 6 °C)

Performance Chart chillii® PSC12 (Fan coils)

SOLARNEXT

clean energy for you

³⁵

Quality Assurance & Support Measures for Solar Cooling Systems

60

Rejected heat, Q [kW] 00 12

0

28

30

32

34

Outlet cooling fluid temperature, T_{cf.out} [°C]

Comparing wet and dry heat rejection in warm climates

- Fan power increases exponentially as exit temperature approaches ambient
- Wet cooling maintains performance closer to nameplate rating over a wider range of ambient conditions

-Rejected heat

----Fan electric consumption (wet cooling tower)

 $\dot{m}_{cf,in} = 4600 \text{ kg/h}$ $T_{cf,in} = 40 \text{ °C}$

38

 $T_{a,db} = 25 \text{ °C}$ RH = 50 %

Fan electric consumption (dry cooler)

36

1200

900

600

300

40

3. The heat production system

 a. The heat production (solar) system (collectors and storage), including state of the art on concentrating and new collectors
Seasonal weather variations

Tosk 48Quality Assurance & Support Measures for
Solar Cooling Systems

Solar Cooling Systems

Solar radiation Costante solare Radiazione solare 1.367 W/m² Atmosfera **Dispersione** dovuta Riflessione all'atmosfera attraverso le nuvole Assorbimemento attraverso Radiazione diffusa l'atmosfera Radiazione diretta Riflessione (Albedo) Irradiazione globale al suolo 1.000 W/m²

Air collectors

- Direct heating of the air
- Normally used to pre-heat the supply air. Requires ventilation system e.g. industrial buildings
- Possible combination with open-cycle systems e.g. DEC for desiccant material regeneration

Flat plate collectors

- Heating of the heat transfer fluid (water and anti-freeze component, e.g. Glycol)
- Major use, domestic hot water production
- Dominates the production of collectors in Europe
- Selective surface treatment necessary to achieve temperatures suitable for use for Solar Cooling systems

Evacuated tube collectors

- Evacuated tubes for the reduction of thermal energy losses (convection, conduction)
- Different construction types available:
 - □ heat-pipe or direct flow (U tube) or water filled
 - single glass tubes or double wall (Dewar)
 - with / without concentrator
- Dominates the production of collectors in China which is the largest exporter

Other variants for high efficiency/high temperature (without tracking the sun)

- Double glazed or convection retarding flat plate collectors with selective coating
- Compound parabolic collectors (stationary concentrating collectors (~2 suns))

Instantaneous solar collector efficiency

Solar Cooling Systems

Annual solar production

FPC: flate plate collector

EFPC: flate plate collector with concentrating parabolic compound (CPC)

ETC: vaccum tube collectors

CPC: vaccum tube collectors with concentrating parabolic compound (CPC) PTC: parabolic trough collector

Influence of collector tilt angle

Source: Cejudo, Solar Energy, Volume 86, Issue 1, Pages 1-680 (January 2012)

Quality Assurance & Support Measures Solar Cooling Systems

Solar collector efficiency and TDC fit

Concentrating Collectors (direct radiation only)

Thermal storage tank mixing

ower sensor location gives increased startup storage but startup delay

Storage tank functions

Quality Assurance & Support Measures for

Solar Cooling Systems

- Thermal stratification is your friend
 - It directs the coldest fluid to the collectors (increased efficiency)
 - It directs the hottest fluid to the application (increased efficiency and capacity)
 - It provides buffer capacity without loss of temperature
 - It reduces chiller cycling

SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY

Quality Assurance & Support Measures Solar Cooling Systems

Thermal storage tanks

Empty tank

- low cost
- may have mixing

"Combi" tank with coil

- potable water & heating
- temperature reduction

Stratified tanklow mixing loss

4. System configurations and control

 a. System configurations (solar assisted and solar autonomous systems) and control (including advanced control with self-detection of faults and malfunctioning). Solar district cooling.

The basic flow-sheet: Putting it all together

- Separate flow circuits for the chiller and collectors enables independent charging and discharging
 - Cold water off the bottom of the thermal storage tank is heated by the collector and fed back to the top of the tank

SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY

Tank bypass options

21st June 2008 Hot summer Day with single clouds

10th July 2008 Hot summer day with almost clear sky

11th July 2008Hot summer day, some clouds in the early
morning and thunderstorm in the afternoon

									NORT COMPA			
Storage charge	Case1			Case 2			Case 3			Case 4		
and discharge control options	Full storage always used		Full storage with bypass			Partitioned storage with 300 l top volume		Partitioned storage with 300 l top volume and bypass				
Analysed day	21 st June	10 th July	11th July	21 st June	10 th July	11th July	21 st June	10 th July	11th July	21 st June	10 th July	11th July
Start up time of ACM	\bigcirc			\bigcirc			$\textcircled{\begin{time}{0.5ex}}$				\bigcirc	
Coverage of cooling load	72%	73%	61%	89%	86%	83%	88%	84%	80%	90%	86%	84%
COP _{th} [-]	0.66	0.68	0.64	0.66	0.68	0.65	0.66	0.68	0.65	0.66	0.69	0.65
COPel [-]	7.07	8.51	7.50	7.26	8.49	7.69	7.07	8.47	7.42	7.06	8.39	7.18

Another buffer tank flow arrangement

- Better stratification
- Requires variable speed drives and associated control scheme

Chilled water buffer?

Suggest as per normal air conditioning requirement

- Hot water buffer is required for management/ control of intermittent solar heat supply (cant be eliminated) – hence chilled water buffer is duplication of storage need and increases cost
- □ Hot water has higher specific energy storage (hot water storage ΔT is higher than cold water ΔT)

Although (i) chilled water suffers from lower heat losses and (ii) high hot water ΔT leads to less efficient solar collectors and (iii) hot water converts to cold at COP<1 (for single effect chillers)

Frost protection

- Secondary heat transfer fluid
- Heat exchanger (or in tank coil) on the collector or chiller side of the tank
- Reduced performance (parasitic power & lower temperature)
- Extra cost (heat exchanger and pump)

Heat transfer fluid above 100°C

- Pressurised hot water
 - Pressure vessels for the thermal buffer

Thermal oil

- Atmospheric pressure but
 - Bunding ?
 - Cost of thermal buffer fluid
 - Contamination oxygen, water
 - Viscosity differences between 20°C and 180°C
 - Chiller performance degradation
 - Absorption chiller manufacturers requirements

Stagnation temperatures can be very high

- Defocus concentrating collectors
- Pressure relief
- Drain-back

Gas boost

Gas boost in parallel preferred Boost while the solar store is charging (not both together) to prevent gas charging the thermal store and taking 100% of the duty

Some double effect chillers have

integrated gas boost

SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY

Quality Assurance & Support Measures for Solar Cooling Systems

Or this

Potable hot water production

- High temperature for solar cooling can cause scale issues.
 - □ If scale is not an issue then in-tank coil is ok
- If all heat exchangers are water marked then possibly have a direct take off

Control of collector fluid circulation loop

Method 1 (generally for smaller systems with fixed speed pumps)

- □ Start pump when $T_{coll,out} T_{coll,in} > x °C$
- Stop pump when $T_{coll,out} T_{coll,in} < y \circ C$ (hysteresis reduces pump starts)

Method 2 (generally for larger systems with variable speed pumps)

- □ Start pump when PV cell output > x W
- Vary pump speed to maintain

- $T_{coll,out}$ – $T_{coll,in}$ = constant $^{o}C\,$ – captures the most solar heat or

• $T_{coll,out}$ = constant °C – higher driving temperature = capacity from chiller

Control of chiller heat supply loop

- When chiller requests cooling....
 - For gas boost application
 - Pumps (heat supply, cooling water, chilled water) turn on
 - Switch to solar thermal store when $T_{tank} > x \circ C$, switch off gas
 - Switch to gas boost when T_{hot} < y °C, switch off solar
 - For compression chiller application
 - Pumps turn on when solar thermal store T_{tank} > x °C
 - Pumps turn off when T_{hot} < y °C

Chiller

Control of chiller part load

- Reduce heat source temperature to reduce chiller capacity
 - Mix hot water supply and return

Or

Increase cooling water temperature

- Reduce cooling tower fan speed (within manufacturers limits, allowing for slow response)
- Most energy efficient

Note: In autonomous operation, when heat source temperature is insufficient to deliver full load, chilled water temperature can increase to maintain chiller capacity

SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY

Quality Assurance & Support Measures Solar Cooling Systems

5. Design approaches

a. Preliminary design aspects, backup sources and efficiency benchmarks

Task 38 monitoring concept

Cold Produced

Electrical efficiency

Energy and emissions savings vs vapour compression chillers

Electrical consumption from parasitic loads

- □ Chiller pumps & controls
- Pumps (solar, process, cooling tower)
- Fans (cooling tower)

Cold Produced

Heat Supplied

Thermal efficiency

- Increasing efficiency
 - Reduced greenhouse gas emissions (when running on gas as a thermal backup)

 $COP_{th} = -$

Reduced collector area and capital cost

Solar Cooling Systems

System thermal efficiency

69

Annual system performance metrics (Combining solar, electrical and backup energy sources)

- Primary Energy Ratio (PER) (solar + backups)
 - = All useful (heating, hot water, cooling) delivered energy All supplied fossil (primary) energy

$$PER_{i} = \frac{\sum Q_{i,out}}{\sum \left(\frac{Q_{el,i,in}}{\varepsilon_{el}} + \frac{Q_{i,in}}{\varepsilon_{in}}\right)}$$

Incremental change in SPF (Δ SPF $_{electrical}$) due to solar = $\frac{Useful (heating, hot water, cooling) energy$ *from* $solar}{Parasitic electricity + electrical equivalent PE to chiller}$

PE conversion factor: electricity – 0,41; fossil fuels – 0,9

Solar Cooling Systems

Comparing primary energy consumption

Single effect solar absorption chiller with gas backup vs compression chiller

Greenhouse gas emissions from backup

	Backup Fuel GHG Intensity	COP/EER	GHG (kg/kWh _{cold})	
No backup (autonomous/ thermal storage only)	na	na	0.09 (1 stg chiller) 0.07 (2 stg chiller)	
Gas backup	0.24 kg/k/h	0.7 (single effect absorption chiller)	0.43	
(absorption chiller)	~0.24 Kg/KVVII	1.2 (double effect absorption chiller)	0.27	
Coal fired electricity	~1 07 ka/k\//b	3 (air cooled)	0.36	
(compression chiller)		6 (water cooled)	0.22	

- Includes parasitic electricity to run cooling tower fans at 0.03 kWh/kWh of heat rejected and 0.01 W/W of cold for the absorption chiller
- Cogeneration / trigeneration could also be used as backup for large GHG savings

Design summary for efficiency

- Gas backup
 - High values of "Solar Fraction" (SF) are needed for low COP_{th} systems with fossil fuel backup
 - Low values of SF are acceptable if you use air conditioning systems with high COP_{th}
 - Conventional compression chiller backup
 - will always reduce the PE
- No backup (solar autonomous)
 - will always reduce the PE but there is no guarantee of maintaining comfort conditions.
- Trigeneration backup should also save PE
- In any case solar heating and domestic hot water saves PE

5. Design approaches

 b. Dimensioning a solar cooling system (chiller size, collector area, storage volume)

Quality Assurance & Support Measures for Solar Cooling Systems

Design approaches

1. Design point sizing with rules of thumb

- □ <u>Gives</u>: Rough sizing of key components and capital cost
- Does not give: Annual energy savings, payback, control analysis, backup chiller sizing
- 2. Simplified sizing tool with annual energy savings
 - <u>Gives</u>: Preliminary sizing of key components, sizing sensitivity, capital cost, annual energy savings and payback <u>for pre-specified solar cooling solutions</u>
 - Does not give: Hydraulics, parasitic electricity and control analysis. Flexible system design (eg process steam draw)
- 3. Full system model
 - <u>Gives</u>: Complete component sizing and sensitivity (including hydraulics), capital cost, annual energy savings, payback, and control analysis for conceived system
 - Does not give: Guarantees

1. Design point sizing

- ~3 m²/kW for single effect absorption chiller
- ~2 m²/kW for double effect absorption chiller
- ~8 m²/(1000 m³/h) for desiccant cooling
- Tends to underestimate collector area for achieving high solar fraction
- May need more area for hot water or other service

Some actual installations

Thermal storage sizing

- Storage for shifting morning sun into evening demand
 - Only if you have high collector area (relative to chiller size)
- Storage for start-up and stable operation through cloudy periods (particularly in autonomous solar designs)
 - Absorption chillers are a slow start-up (~30mins) base-load machines

Quality Assurance & Support Measures for Solar Cooling Systems

Why modelling ?

- Variable source of energy to drive the cooling process
- Variable demand for cooling required from the building

These need to be balanced hour by hour throughout the year

Quality Assurance & Support Measures fo Solar Cooling Systems

2. Simplified sizing tools

Pre-simulated building heat loads with matching weather

- Pistache: Available on request http://task48.iea-shc.org/tools
- SACE: http://www.solair-project.eu/218.0.html
- SolAC: http://www.iea-shc-task25.org/english/hps6/index.html

3. Full dynamic simulation software

calculation of generic energy systems

- TRNSYS www.sel.me.wisc.edu/trnsys/
- ColSim www.colsim.de
- Insel http://www.inseldi.com/index.php?id=21&L=1
- Transol 3.0 www.aiguasol.coop

calculation of buildings

- Energy plus www.eere.energy.gov/buildings/energyplus/
- ESP-r FREE http://www.esru.strath.ac.uk/Programs/ESP-r.htm

Software	Solar components	AC components	New components	Free download	Open source
TRNSYS	Yes	Yes	Yes	No	Yes
ColSim	Yes	Yes	Yes	N.A.	Yes
Energy Plus	Yes	Yes	Yes	Yes	N.A.
INSEL	Yes	Yes	Yes	No	No

Sensitivity analysis #2

0.09

0.12

Storage Tank Specific Volume (m³/m²)

0.15

0.18

0.21

collector

Total Solar Fraction (-) 0.6 0.5 0.4 0.3 0.2 0.1 0 0.03 0.06 0

0.9

0.8

0.7

Quality Assurance & Support Measures for Solar Cooling Systems

5. Design approaches

c. Quality assurance and lessons learned

Chiller considerations

- When using gas as a backup, its probably best to select a two stage absorption chiller
- Cooling water needs to be kept inside temperature limits.
- Absorption chillers are steady state machines
 - ~30 min cold start + dilution cycle shut down
 - □ So don't add a "safety margin" to chiller sizing
 - Larger chiller may <u>reduce</u> energy savings
 - Can cause cycling resulting in heat losses and poor diurnal availability

Heat collection considerations

- Aim for equal flow through panels for full use of available collector area
 - Balancing valves (but watch for parasitic power from pumps)
 - Tickleman layout
- Insulate pipes to minimise heat loss
- Allow for possible freezing and over-heat stagnation eventualities
- Err on over-sizing of solar side heat exchangers to minimise temperature reduction

Buffer tank considerations

- Thermal stratification is your friend
- So look to
 - maximise temperature lift across solar collectors (low flow)
 - avoid circulating excessive volumes of fluid through the tank
 - consider use of baffles/ special stratification tanks
 - avoid situations where a back-up boiler takes over heating of the tank (in place of the solar system)
 - put in more temperature sensors at different levels and consider optimal placement to obtain a reliable control signal

Monitoring and commissioning checks

- Past experience suggests sub-metering is required to evaluate and enforce contractor compliance on
 - □ Parastic power pump and fan efficiencies
 - □ Heat losses insulation effectiveness
- Monitor and adjust control strategies/ thermal storage management strategies across all seasons.