

International Conference on Solar Heating and Cooling for Buildings and Industry

October 9-11, 2012 San Francisco, USA

Operational Performance Results of an Innovative Solar Thermal Cooling and Heating Plant

Manuel Riepl, Richard Gurtner, Martin Helm, Christian Schweigler

ZAE Bayern

Walther-Meißner-Str.6, 85748 Garching Germany

www.zae-bayern.de

Agenda

- 1. Introduction and Motivation
- 2. System Concept and Pilot System
- 3. Operational Results
- 4. Conclusion and Recommendations

1 - Introduction & Motivation

Solar Cooling

ZAE BAYERN

Conventional solar cooling system with single stage (single-effect, SE) absorption chiller

- Hot water driven single stage absorption chiller
 - \rightarrow hot water from solar collector (T_{HW} ~ 90°C)
- In case of insufficient solar radiation and parallel cooling demand a backup heat source is needed (mostly fossil fired hot water boilers)
- Rather poor utilization of primary energy of fossil fuel due to limited efficiency of the singleeffect chiller (COP_{SE} ~ 0,70)
- → Improved utilization of fossil fuel is imperatively essential for a positive primary energy ratio for such a solar-cooling system

1 - Introduction & Motivation

Approach:

Addition of a high temperature stage with a direct gas fired high temperature generator (G2)

- Usage of fossil driving heat (flue gas from a natural gas burner) in double effect (DE) absorption chiller offers higher efficiency
 - **COP**_{DE} ~ **1,2**
- Coupling of single- and double effect chiller (DE/SE) allows simultaneous usage of hot water (solar collectors) and fossil driving heat

$$(COP_{DE/SE} \sim 1,0)$$

 → improvement of primary energy ratio as compared to a single-effect fossil backed-up system

1 - Introduction & Motivation

ZAE BAYERN

2 – System Concept

ZAE BAYERN

Data of the pilot system @ Lindner, Arnstorf (D)

Absorption chiller **90kW** cooling / **160 kW** heating cap. (LiBr/water, Thermax)

Solar field (STI): 265 m² flat plate collectors (nom. cap. ~ 90 kW @ 90°C)

Storage capacity (water): 17 m³ -> specific storage : 56 l / m² solar collector

Building: ~ 3400 m² office building, activated ceilings

moderate supply temperatures (cooling 15/18, heating 35/30 °C)

Annual demand (calc.) Cooling: 10 kWh/m²a - Heating: 120 kWh/m²a

Manuel Riepl July 10, 2012 SHC 2012, SF

ZAE BAYERN

Flexible and simultaneous operational modes

Summer Cooling and DHW preparation

Spring/Autumn/Winter Heating and DHW preparation

3 – Operational Results

Cooling (typical day in Sept. 2011)

3 – Operational Results

Heating (two days in FEB 2012)

4 – Conclusion & Recommendations

Positive experience in real operation

- All operational modes automatically possible
- Flexibility of the system proven, no extra backup source for heating and cooling needed!) -> All energies from "one single source"
- High primary energy efficiency in solar cooling mode (PER < 0,3)
- High solar fraction of cooling (56%)
- Thermal design point reached (all operational modes)
- Low auxiliary electrical consumption ->
 high COP_{el} = 8,7 (whole cooling season)

4 – Conclusion & Recommendations

Improvement potential & things to avoid in the future

- Partly weak thermal efficiency of absorption chiller in gas driven mode (esp. mixed solar/gas mode)
- Partly low part load efficiency (gas mode; summer & winter)
 - → Improved design of internal absorption cycle needed (solution heat exchanger efficiency & solution mass flow)
- Simplification of planning and installation process for competitive economics needed and in progress
 - → Pre-designed, pre-engineered system (hydraulic and control)
- **New R&D project** starting in Sept. forcing all mentioned improvement possibilities (efficiency and initial economics)

Manuel Riepl Bavarian Center for Applied Energy Research (ZAE Bayern)

Walther-Meissner-Str. 6

D-85748 Garching (bei München)

Phone: +49 89 329 442 **43** (-0)

Fax: +49 89 329 442 12

email: riepl@muc.zae-bayern.de

web: www.zae-bayern.de