

Agenda

1. Chromasun Overview

- 2. Principles of Solar-Enhanced Heating & Cooling
- 3. Hawaiian Hotel Case Study
- 4. Economics in Other States
- 5. Q & A

So what's in the Chromasun toolbox?

HVAC and Heat Pump makers a reliable gas/solar alternative to electric.

CHROMASUN

Solar Installers

Chromasun: solar-enhanced heating & cooling for commercial & industrial facilities

Three Technical Approaches

Segment A

Process Heat

- Steam, pressurized H₂O
- Boiler pre-heat
- Hydronic Heating
- Domestic Hot Water

Large market (some segments better developed than others)

Segment B

Solar Heat-Pumping

- CHW & DHW, or
- CHW & HHW, or
- CHW & process heat
- Single-effect
 Absorption Chillers
 (COP 2.20)
- Co-fired with NG

Under-developed market

Segment C

Solar Cooling

- Chilled Water (heat reject to outside)
- Double-effect
 Absorption Chillers
 (COP 1.35)
- Co-fired with NG for reliability & economics

Under-developed market

Chromasun's Previous Solar Experience

• Peter Le Lievre (CEO) and Andrew Tanner (VP of Engineering) were co-founders and engineers at Ausra, now Areva Solar.

2008 Chromasun Formed

Objective: miniaturize the successful utility-scale Fresnel concentrating optic and make it into a rooftop-friendly product

Chromasun's Micro-Concentrator (MCT)

How the MCT Collector Works

Solar Light Path

Hermetically Sealed Glass Enclosure

Stainless Steel Receiver Pipe

Self Tracking Fresnel Mirrors

The MCT: Superior Efficiency at Higher Temperatures

The MCT: Superior Efficiency at Full and Partial Sun

Chromasun 10 MW* Capacity Factory (San Jose, CA)

Chromasun MCTs are made in the USA

* Single Shift

Agenda

- 1. Chromasun Overview
- 2. Principles of Solar-Enhanced Heating & Cooling
- 3. Hawaiian Hotel Case Study
- 4. Economics in Other States
- 5. Q & A

Re-Examine an Old Paradigm The Typical Commercial HVAC Setup

How do traditional Heat Pumps work? (e.g. an air-conditioner)

Heat pumps push heat in the "wrong" direction

Electro-mechanical force drives the process

We experience this as cool air inside

Heat is pumped into an already warm environment <u>as a</u> waste product

How does our Solar Thermal Heat Pump work?

Difference #1: Thermal energy drives the system

Difference #2: Pumped heat is <u>used</u>, not wasted

How do Chromasun Systems work?

Gas can drive the heat pump...

...or solar energy, or both!

Segment B: Solar Heat Pumping (Heating & Cooling) (DHW focused)

Chromasun MCT Showcase

Santa Clara University Benson Building

- 60 MCT panels
- 2,682 square feet
- 120KWt peak
- 410 Mbtu/h
- 6,727 therms PA

Boiler feedwater preheat application

 HHW and DHW (2,880 GPD) for main cafeteria

Installed 2011

Crow Canyon Medical Center

Danville, CA

50RT Thermax Chiller

- 75 MCT panels
- 3,352 square feet
- 150KWt peak

Annual Outputs

- 340 MWH CHW
- 3,840 therms DHW

Installed 2012

Tour available at this conference!

Solar/Heat Pump Installations

Chromasun (50RT) California

Festo/DLR (500RT) Europe

Over 300 commercial / industrial systems worldwide.

(IEA 2009 study)

Proterra (40RT) Canada

Solid (50RT) Europe

Solid (175RT) Europe

Agenda

- 1. Chromasun Overview
- 2. Principles of Solar-Enhanced Heating & Cooling
- 3. Hawaiian Hotel Case Study
- 4. Economics in Other States
- 5. Q & A

Beachside Resort, Hawaii

Hawaii Hotel Case Study

- 50 RT gas/solar heat pump solution (150 MCTs)
- Annual Electricity offset: 278 MWh*
- Propane Gross Offset: 177,700 gallons (before absorber consumption)
- Net LPG Consumption cut by 58%

Chromasun Technical Integration with Facility – P&ID

Hawaiian Hotel Solar Contribution

v3.65

9,000 Ft²

Solar Array Production

Weather Data-file

Hawaii (SW island)

			i otai Array	5/2
_	_	 		

 Solar Array Operational Availability
 836 M²

 Jan
 Feb
 Mar
 Apr
 May
 Jun
 Jul
 Aug
 Sep
 Oct
 Nov
 Dec

 CF
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%
 100%<

Chromasun Collectors

Count 150 Oper. Temp. 120 °C Model MCT-HT235 248 °F Peak Rating 1.9 kW_{TH}

Production Potential (MWh TH)

Loa d Factor 26.8 January 100% February 29.2 100% March 30.7 100% April 30.8 100% May 29.5 100% June 29.6 100% July 29.5 100% 32.1 Aug August 100% Sep September 32.0 100% Oct October 29.4 100% 26.8 Nov November 100% Dec December 26.7 100% *353.0* Total 100%

Key Metrics	MWh _{TH}		
Average Monthly	<i>29.414</i>		
Max Monthly	<i>32.0</i> 88		
Min Monthly	<i>26.704</i>		
Peak Output	<i>0.2</i> 85		

Hawaiian Hotel – Thermal Dynamics (Int'l units)

Hawaiian Hotel – Thermal Dynamics (US units)

Hawaiian Hotel Economics

Chromasun System Turnkey Economics						
	<u>Assumptions</u>	Approx. Amount				
Total Installed Cost		\$	1,740,000			
HI Grant in lieu of State Tax Credit		\$	(350,000)			
HI (Hawaii Energy) HEEP SHW CBI		\$	(30,000)			
Federal MACRS w/50% bonus	IRS: Sec. 48; Bulletin 2011-16; Pub 946	\$	(600,000)			
Federal ITC 30%	IRS Sec. 48(a)(3)	\$	(500,000)			
Total Cash Cost (net of incent	\$	260,000				
Utility Savings Cash Flows						
Boiler Energy Savings	Year 1	\$	458,466			
Absorber Energy Purchases	Year 1	\$	(196,013)			
Electricity Savings	Year 1	\$	91,709			
Year 1 Savings		\$	354,161			
Key Economic Assumptions						
Cooling Energy	Cooling Energy \$0.330 / kWh (inflation factor = 5% / yr)					
Heating Energy	\$2.58 / LPG-gal (inflation factor = 5% / yr)					
Existing Boiler / Chiller COPs	Existing Boiler / Chiller COPs 0.70 / 4.50					
DHW Consumption	Avg 62,368 GPD, with a 60.0 °F temperature gain					
Chromasun Solar THP Capacity	50 TR (cooling) @81% capacity factor					
Combined Tax Rate	40%					
Simple Payback	1.2	Yea	ars			
Project IRR	50%					

Chromasun Comparison to Solar PV and SHW Flat-plate

	Chromasun	Solar PV	SHW Flat-plate
Net Utility Offset (annual)		\$354,161	
Total Collectors	150	3937 (787 kW _{DC})	930
Array Size (sq.ft.)	9,000	75,590	71,640

Agenda

- 1. Chromasun Overview
- 2. Principles of Solar-Enhanced Heating & Cooling
- 3. Hawaiian Hotel Case Study
- 4. Economics in Other States
- 5. Q & A

Typical Chromasun THP Economics (with combined heating & cooling) (Hospitality Sector)

Cuts heating fuel consumption in half + electricity savings Offsetting 100% of DHW and a portion of CHW loads

TurnKey Purchase Option

- 1½ 3 year paybacks (HI); 2-4 year payback (CA & AZ)
- Significant offset to chiller electricity
- Strongest economic value requires appetite for tax incentives
- Performance Guarantee & O&M options available

- Zero-capital outlay, immediate savings from day 1
- Pay-as-you-go by the meter; means equipment and performance risk is on Chromasun
- Pricing based a negotiable discount to public tariff: Chromasun takes all risk for all utility price changes. Client discount remains the same, regardless of the market.
- Substantial utility discounts available
- Financing resources available now

Agenda

- 1. Chromasun Overview
- 2. Principles of Solar-Enhanced Heating & Cooling
- 3. Hawaiian Hotel Case Study
- 4. Economics in Other States
- 5. Q & A

1050 N. 5th Street, Suite A San Jose, California USA 95112 www.chromasun.com Scott Reed
Director of Sales
818-421-4229
Scott.Reed@Chromasun.com

Performance Tracking

Solar Resource Monitoring

Production: Modeling vs. Performance

(independently verified by TRANE)

Testing program – began 2009

Santa Clara University, California

GE Global Research - Bangalore, India

SoCalGas - Los Angeles

Australian National University

SRCC - Menlo Park, California

GE Global Research - Munich, Germany

