

Institute of Air-handling and Refrigeration (ILK Dresden)

Development of a small capacity directly air-cooled water/LiBr absorption chiller Chinese Solar Cooling Conference, Shanghai, 27.3.2015

ILK Dresden – R&D company

- Founded in 1964
- Re-established as independent research institute in 1991

Employees: 145

Academics: 72 %

mean age: ~44

Laboratory area: ~3000 m²

Test rigs: ~56

Phys. / Chem. Laboratories: 25

Background and goal of the development

Problems in solar thermal cooling systems with small scale chillers

- **Complexity of the system**
- Interface problems because of different crafts (might be) involved
- Possibly high error rate during installation
- Auxiliary energy demand of the system
- Limited applicability of evaporative systems but high re-cooling sensibility of the cycle

Challenges

- Avoiding of an intermediate circuit:
 - to minimize the auxiliary energy demand (as re-cooling circuit pump usually consumes much electricity)
 - for a better approach of external and internal temperatures since temperature lift and driving temperature are limited
- Air-cooled absorber needed
- Water as refrigerant -> big free section needed

Air as heat transfer media -> big free section needed

Distribution of the auxiliary energy demand of a small scale water cooled absorption chiller

Nominal cooling capacity: 19,4 kW

Auxiliary energy demand of the system

Auxiliary energy demand of the system with constant speed pumps/fans as a function the cooling capacity

Distribution of auxiliary energy demand

Examples of air-cooled absorption chillers

Source: Rotartica

H₂O/LiBr, rotating HX, intermediate circuit

NH₃/H₂O -> high working pressure! **Gas driven -> high driving temperature**

Examples of air-cooled absorption chillers

Source: Broad

H₂O/LiBr, gas driven, intermediate circuit

 $Q_0=23$ kW; zetta=1,1, $P_{el}=1.8$ kW (COP_{el}=12,7)

Balancing Single Lift vs. Double Dift

chilled water out: 13 °C

Aimed specifications for the development

External Fluid	Nominal Condition	Operating Range
Chilled water temperature (water w. 20 % Glycol)	18 °C / 13 °C (in/out)	6 °C 20 °C (out)
Heating water temperature (water w. 20 % Glycol)	95 °C / 87 °C (in/out)	75 °C 105 °C (in)
Ambient air (for re-cooling)	32 °C / 42 °C (in/out)	10 °C 32°C (in)
Cooling capacity	8 kW	

- Condenser and Absorber directly air-cooled
- Outdoor installation, frost save
- Auxiliary energy consumption at nominal conditions $< 60 \text{ W}_{el}/\text{kW}_0 \text{ ("EER" > 16)}$
- Single effect / single lift

Test of components within functional model

Improved functional model

First lab results

Restrictions of lab measurements

- Limited space and height in lab
- No free outflow of absorption chiller outlet air
 - -> increased air-side counter pressure
 - -> higher fan speed for same air flow rate needed
 - -> increased power consumption of fan
 - => no meaningful results regarding EER_{el}
- Difficulty to maintain even temperature distribution

Conclusion and Outlook

- Thermal design point reached
- No useful results regarding electrical efficiency yet
- Field test planned in summer 2015

Results expected regarding

- Electrical efficiency
- Operational experience
- Outdoor installation

Vacuum ice slurry technology for high density cold storage, e.g. in PV driven cooling systems

- High energy density (93 kWh/m³)
- Higher efficiency than conventional ice bank storage through high evaporation temperature
- No glycol circuit needed
- Ice slurry is pumpable
- Capacity range: 50 ... 500 kW
- Matching solar radiation and cooling demand

ILK Dresden

Thanks for your attention!

Questions?

ILK Dresden

Department of Applied Energy Engineering Bertolt-Brecht-Allee 20; 01309 Dresden; Germany

Dr.-Ing. Mathias Safarik

Tel.: +49 351 4081-700

E-Mail: mathias.safarik@ilkdresden.de