1st Saudi Renewable Energy Conference & Exhibition

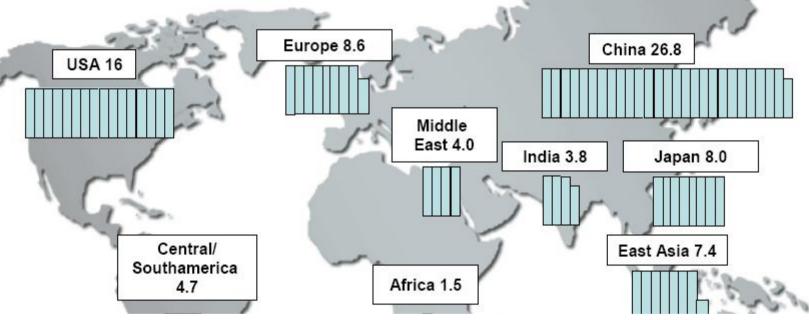
Solar Thermal Energy For Cooling and Refrigeration: Status and Perspectives

Dahran, Saudi Arabia, 20/02/2012

Daniel Mugnier TECSOL

Contents

- 1. Introduction
- 2. Technical status
- 3. Energy performance
- 4. Market status
- 5. Economic viability
- 6. Perspectives and R&D challenge
- 7. Conclusion



& support measures for Solar Cooling

Introduction

Estimated RAC/PAC Market Size in 2008 (units: million) Air-Conditioning Split-Units up to 5 kW (1.4 RT)

Even now with a -10% market decrease market in 2009 and stagnation in 2010 and 2011

The World market is representing... 70 000 000 000 US\$

Source: JARN

World total 2008: 82.3 million units

Source: Uli Jakob, SOLARNEXT 2009

Introduction

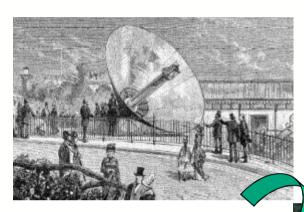
Overall approach to energy efficient buildings in Europe

- Assure indoor comfort with a minimum energy demand
 - 1. Reduction of energy demand
 - 2. Use of heat sinks (sources) in the environment
 - 3. Efficient conversion chains (minimize exergy losses)
 - 4. (Fractional) covering of the remaining demand using renewable energies

Building envelope; ventilation

Ground; outside air (T, x) directly or indirectly; storage mass

HVAC; combined heat, (cooling) & power (CH(C)P); networks; auxiliary energy


Solar thermal; PV; (biomass)

& support measures for Solar Cooling

Introduction on Solar Cooling Evolution

From World exhibition in Paris: First ice block through solar energy (1878)

SCIENCE

Source: Olynthus Verlag

To Banyuls sur Mer ...
(1991)
Europe
52 kW - 130 m²
Still running nominally

Source: TECSOL

MARKET

To UWCSEA in Singapore ... (2011)
1500 kW - 4 000 m²

Asia

Source: SOLID

TECHNOLOGY

Contents

- 1. Introduction
- 2. Technical status
- 3. Concepts & Energy performance
- 4. Market status
- 5. Economic viability
- 6. Perspectives and R&D challenge
- 7. Conclusion

Task 48 : Quality assurance & support measures for Solar Cooling

Solar thermal cooling - basic principle

Basic systems categories

- Closed cycles (chillers): chilled water production
- Open sorption cycles: direct treatment of fresh air (temperature, humidity)

Closed cycles – water chillers or ice production

 Liquid sorption: Ammonia-water or Water-LiBr (single-effect, double-effect, future triple-effect)

Solid sorption: silica gel – water, zeolite-water

Thermo-mechanical systems

source: website Kawasaki Heavy Industries Pte Ltd

Open sorptive cycles – desiccant air handling units Air treatment in an open cycle

- Solid sorption
- Desiccant wheels
- Coated heat exchangers
- Silica gel or LiCl-matrix, future zeolite

- Liquid sorption
- Packed bed
- Plate heat exchanger
- LiCl-solution: thermochemical storage possible

Task 48 : Quality assurance & support measures for Solar Cooling

Technical status

■ Mature components available (both solar and refrigeration, A/C)

Driving temperature	Collector type	System type		
Low (60-90°C)		Open cycle: direct air treatment		
		Closed cycle: high temperature cooling system (e.g. chilled ceiling)		
Medium (80-110°C)		Closed cycle: chilled water for cooling and dehumidification		
	A COCCO	Closed cycle: refrigeration, air- conditioning with ice storage		
High (130-200°C)		Closed cycle: double-effect system with high overall efficiency		
		Closed cycle: system with high temperature lift (e.g. ice production with air-cooled cooling tower)		

1st Saudi Renewable Energy Conference & Exhibition
19 - 21 February, 2012
Technology, Read Anthre

Task 48 : Quality assurance & support measures for Solar Cooling

Sorption cooling

Type of system	Water chillers (closed thermodynamic cycles)							Direct air treatment (open thermodynamic cycles	
Physical phase of sorption material		Liquid			Solid			Liquid	Solid
Sorption material	Water	Lithium-bromide			Zeolite	Silica gel	Lithium- chloride	Lithium- chloride	Silica gel, zeolite, cellulose / lithium- chloride
Refrigerant	Ammonia	Water		Water	Water	Water	Water	Water	
Type of cycle	1-effect	1-effect	2-effect	3-effect	1-effect	1-effect	1-effect	Cooled sorption process	Desiccant rotor
COP range	0.5 - 0.75	0.65 - 0.8	1.1 - 1.4	1.6 - 1.8	0.5 - 0.75	0.5 - 0.75	0.5 - 0.75	0.7 - 1.1	0.6 - 0.8
Driving temperature range, °C	70 100 120 180 ⁽¹⁾	70 100	140 180	200 250	65 90	65 90	65 90	60 85	60 80
Solar collector technology ⁽²⁾	FPC, ETC SAT ⁽¹⁾	FPC, ETC	SAT	SAT	FPC, ETC	FPC, ETC	FPC, ETC	FPC, ETC, SAHC	FPC, ETC, SAHC

1: high temperature lift

2: FPC = flat plate collector; ETC = evacuated tube collector; SAT = single axis tracking collector; SAHC = solar air heating collector

& support measures for Solar Cooling

Technical status

Mature components available (both solar and refrigeration, A/C)

Thermax

(India)

Nishyodo (20-140 RT) (Japan)

Maekawa (14-100 RT)

Technical status

- Mature components available (both solar and refrigeration, A/C)
- Main progress made in last decade
 - Small scale heat driven chillers
 - Increasing number of high efficient double and recently triple effect absorption chillers
 - > Development of systems using single-axis tracking solar collectors

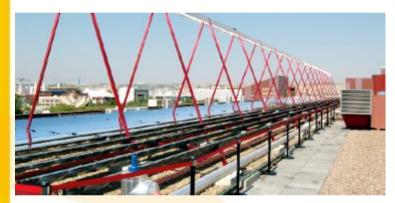
& support measures for Solar Cooling

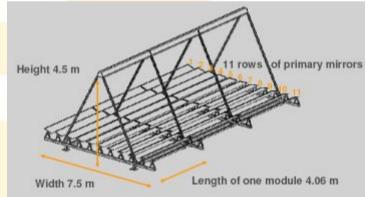
New developments of small capacity water chillers

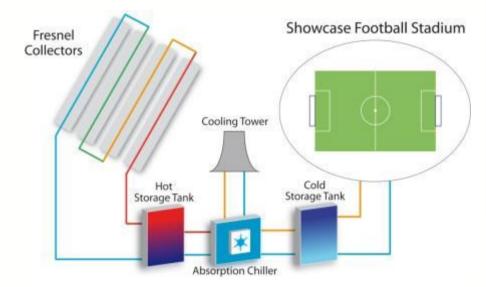
& support measures for Solar Cooling

High-temperature applications

- Increasing number of systems using single-axis concentrating collectors (parabolic trough, Fresnel) in combination with thermally driven chillers (150°C ... 200°C)
 - Double-effect chiller with high conversion efficiency (Coefficient of Performance COP 1.1...1.3)
 - Single-effect chiller with high temperature lift for low cooling temperatures (e.g. ice production) and high heat rejection temperatures (dry cooling towers)
- Application in sunny regions for buildings (e.g. hotels) or industrial application (e.g. cooling of food, ice production)


& support measures for Solar Cooling



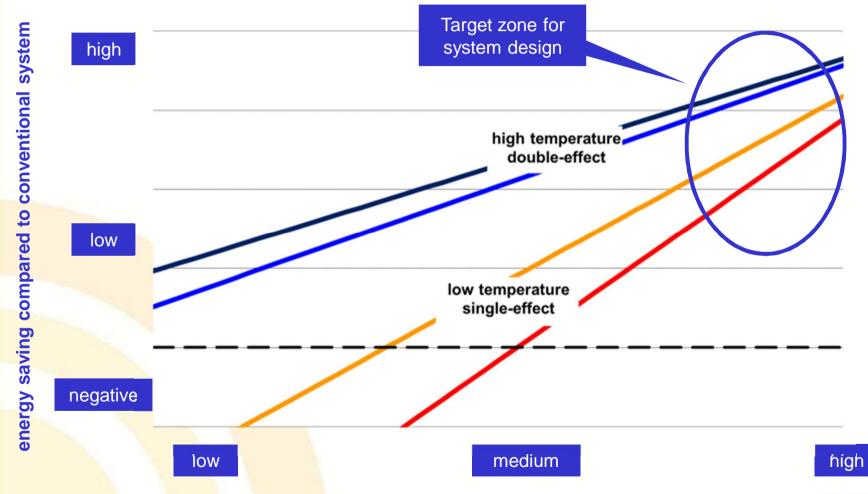

High-temperature applications

Example: Footbal Stadium

in Dubai

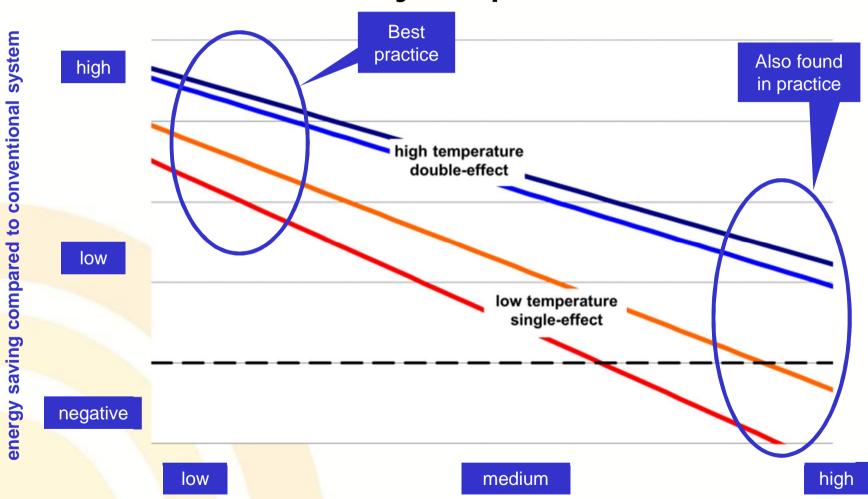
Technical status

- Mature components available (both solar and refrigeration, A/C)
- Main progress made in last decade
 - Small scale heat driven chillers
 - Increasing number of high efficient double and recently triple effect absorption chillers
 - Development of systems using single-axis tracking solar collectors
- Main technical shortcomings are still on system level
 - Energy efficient heat rejection system
 - Energy management
 - Bottleneck: good trained technical staff almost not available

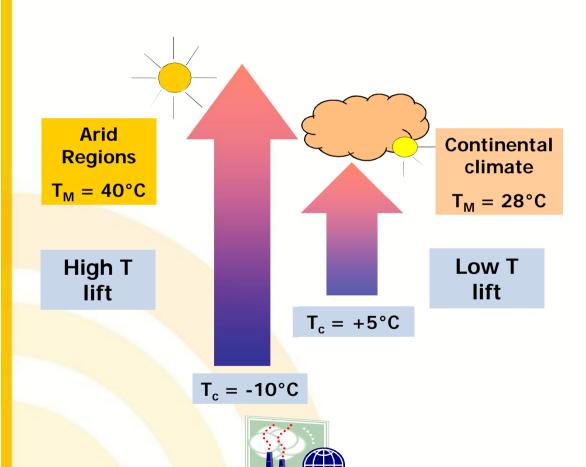

Contents

- 1. Introduction
- 2. Technical status
- 3. Concepts & Energy performance
- 4. Market status
- 5. Economic viability
- 6. Perspectives and R&D challenge
- 7. Conclusion

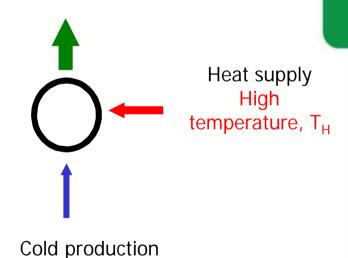
Influence of solar fraction of driving heat


solar fraction of driving heat to operate thermally driven cooling

& support measures for Solar Cooling


Influence of electricity consumption of auxiliary components

& support measures for Solar Cooling



Cold production and Temperature "lift": arid regions

Heat rejection Medium temperature, T_M

Low temperature, T_C

Energy performance

- Many systems lead to measurable energy savings when compared to a best practice conventional reference solution
- Best values of overall electric COP range up to 6-8, which means that 6-8 kWh of useful cooling are produced with 1 kWh of invested electricity
- Target value for electric COP > 10
- However: also many systems do not achieve these values in practice due to
 - Non-optimal design
 - Non-optimal operation (e.g. control, part load)

Example of performing concept in 2011

Building block in Montpellier, France

2 parts: building A & B (mini district)

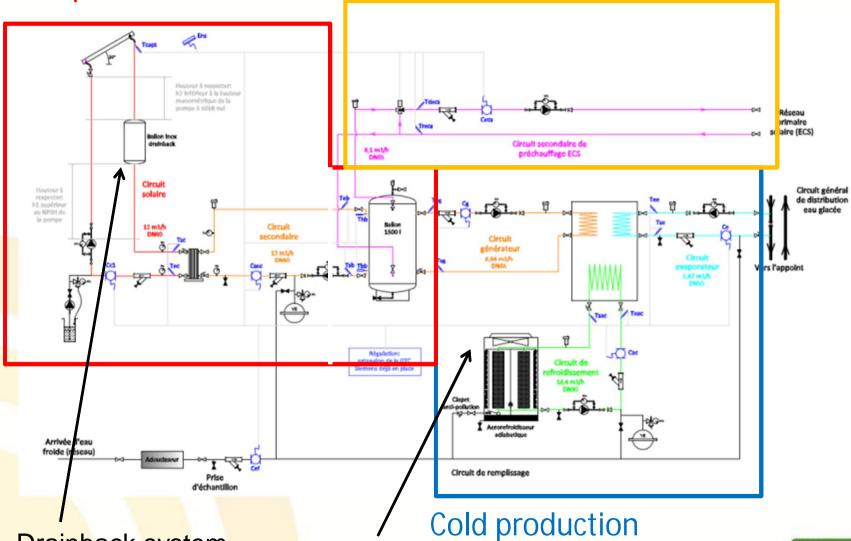
Building A: 11 000 m² for offices and shops

Building B: 10 600 m² with 167 dwellings

Both production of Domestic Hot Water and Cooling

Safe solar production: drainback strategy (freeze & overheating protections)

Energy performance: Electrical COP of... 17!



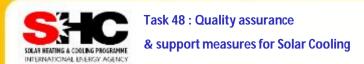
& support measures for Solar Cooling

Solar production

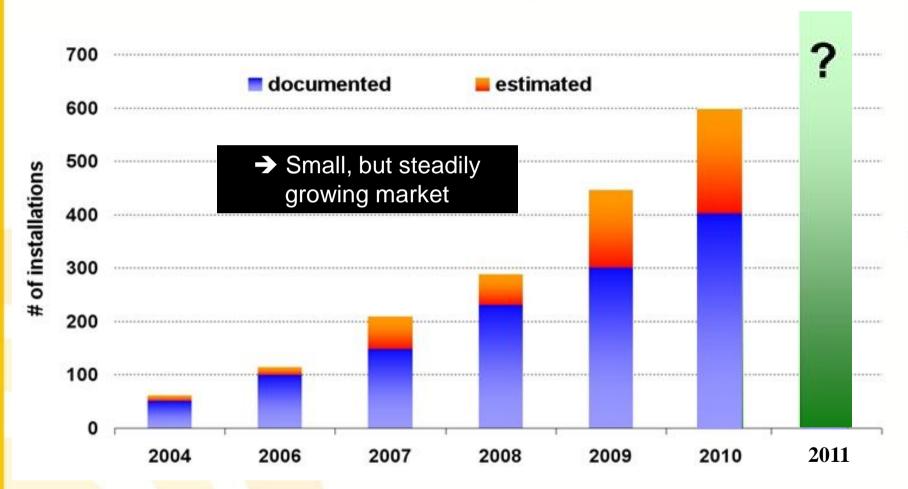
DHW distribution

Drainback system

Anti legionnella adiabatique cooling tower

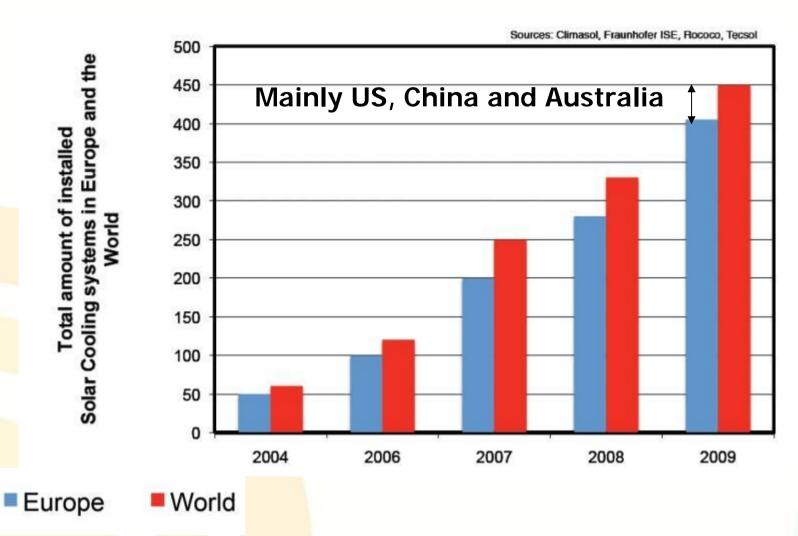


Contents

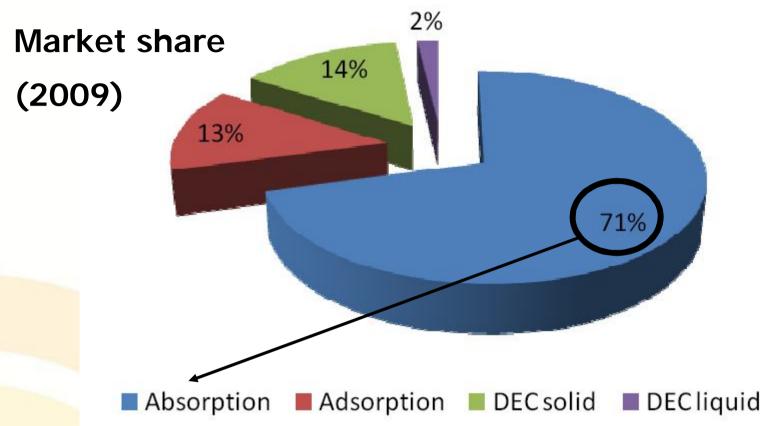

- 1. Introduction
- 2. Technical status
- 3. Concepts & Energy performance
- 4. Market status
- 5. Economic viability
- 6. Perspectives and R&D challenge
- 7. Conclusion

Market – estimated > 800 systems worldwide

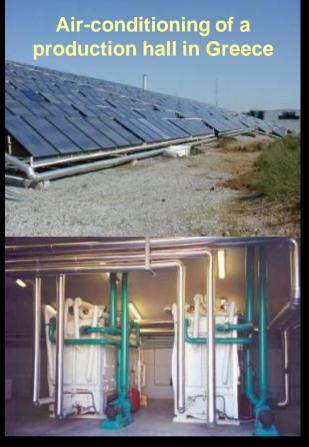
About 150 new installations in 2010 and 2011 (+30%)



Task 48 : Quality assurance
& support measures for Solar Cooling


Market analysis : Europe / World

& support measures for Solar Cooling



 Percentage of use of different technologies for thermally driven chillers within 113 large scale systems.

Ab/Adsorption representing nearly 85%...

Source: EURAC, Sparber & Napolitano, 2009

& support measures for Solar Cooling

Recently large and very large installations (examples)

CGD Bank Headquarter

Lisbon, Portugal

1560 m² collector area

400 kW absorption chiller

Source: SOLID, Graz/Austria

FESTO Factory

Berkheim, Germany 1218 m² collector area 1.05 MW (3 adsorption chillers)

Source: Paradigma, Festo

United World College (UWC)

Singapore

3900 m² collector area

1.47 MW absorption chiller

Source: SOLID, Graz/Austria

& support measures for Solar Cooling

Examples of Custom made system manufacturers

(Australia, Europe)

(Middle East, North Africa)

(USA)

(USA)

(Middle East, Europe, USA)

(Europe, USA, Caribbean, Asia)

(Europe, Middle East)

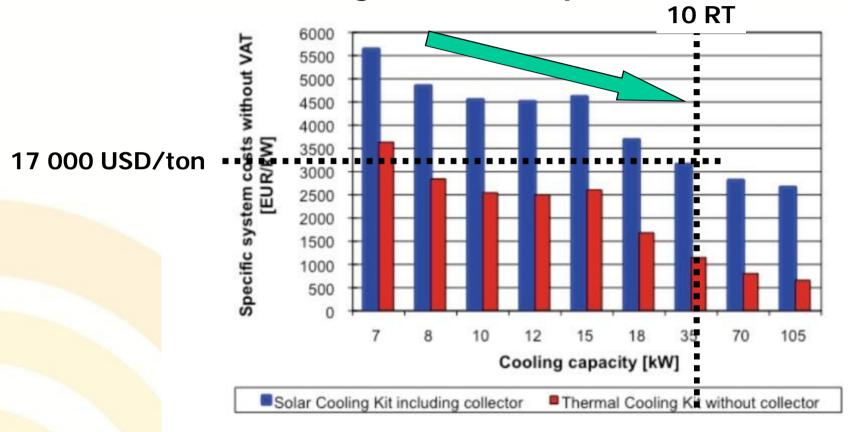
(Europe, North Africa, Middle East)

Source: GreenChiller, TECSOL

Contents

- 1. Introduction
- 2. Technical status
- 3. Concepts & Energy performance
- 4. Market status
- 5. Economic viability
- 6. Perspectives and R&D challenge
- 7. Conclusion

Economic viability


- First cost 2-5 times higher than for conventional technology
- Total first cost found in realized installations: 2000 5000 € per kW of cold production (for entire system including solar collector field)
- Payback time depends strongly on boundary conditions
 - Annual numbers of use (cooling, heating, hot water, ...)
 - Conventional energy cost
 - Climatic conditions
- Best conditions: payback < 10 years possible</p>

& support measures for Solar Cooling

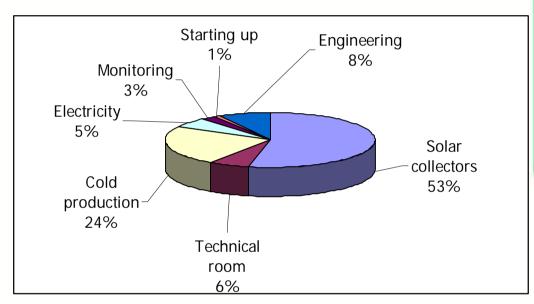
Example of specific total costs of solar cooling kits in Europe

Source: SolarNext

The specific costs are without cold distribtion and installation costs.

^{*} Solar cooling kits generally include: solar thermal collectors, hot water storage, pump-set, chiller, re-cooler, cold water storage, system control.

The appoints age to are without cold distribtion and installation costs.


& support measures for Solar Cooling

System costs: example

Solar cooling installation – 10 tons abs. – France - 2009

	\$ (w/o tax)
Solar collectors	130 000
Technical room	15 080
Cold production	57 200
Electricity	13 000
Monitoring	6 500
Starting up	1 950
Engineering	19 500
TOTAL	243 230
\$/ton	24 323

Source: TECSOL

Cost Reduction Potential of Solar Cooling Kits

Solar Plant (Collectors and Storage):

max. 10% Cost Reduction Potential in the next 2-3 years

Small-Scale Sorption Chillers:

max. 20% Cost Reduction Potential till 2013, from 2011 up to 50% if Serial Production is started (Production Capacity larger than 500 Units)

· Recooler:

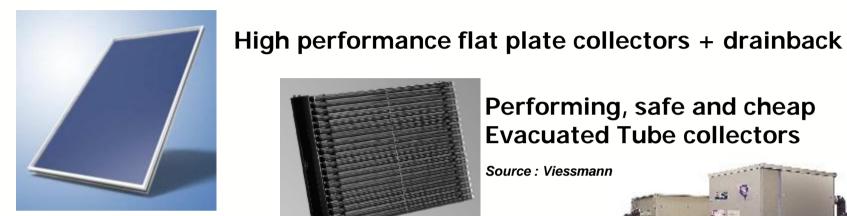
Cost Reduction Potential between 40-50%

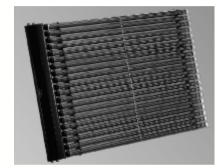
Control:

min. 60% Cost Reduction Potential, Increasing of the System Performance

Installation:

10-30% Cost Reduction Potential through Standardized Solar Cooling Kits


Source: Uli Jakob, SOLARNEXT


& support measures for Solar Cooling

How do reduce costs?

Source: Schüco

Performing, safe and cheap **Evacuated Tube collectors**

Source: Viessmann

Compact packages solutions

Source : EDF Optimal Solutions

And above all...

Large scale production

Source: Broad

Contents

- 1. Introduction
- 2. Technical status
- 3. Concepts & Energy performance
- 4. Market status
- 5. Economic viability
- 6. Perspectives and R&D challenge
- 7. Conclusion

Task 48 : Quality assurance & support measures for Solar Cooling

Perspectives (1/2)

➤ Systems using non-tracking solar collector technology

- Solar heating & cooling (+ DHW) → summer use of large collector fields
- Application in buildings: residential, tertiary sector
- Significant cost reductions in particular for small scale thermally driven chillers (> 50 % possible)
- Increasing level of standardization
- Pre-fabricated systems for small capacity
- Custom-made systems for commercial buildings
- Desiccant systems in particular for air dehumidification in humid climates
 TECSON

Task 48 : Quality assurance & support measures for Solar Cooling

Perspectives (2/2)

Systems using single-axis tracking with optical concentration

- Medium and large capacity range in regions with high direct solar radiation
- Applications with dominant use of cooling (e.g. industrial refrigeration)
- Installation either on the ground or large flat roofs of industrial buildings
- High efficient cooling cycles using double- or triple-effect
- Applications which require a high temperature-lift (e.g. food conservation with dry cooling tower)

R&D challenges

- **Heat rejection**: full integration, lower O&M costs => application as add-in for residential buildings for 100% solar houses in Southern European countries
- New and small capacity open cycles to be integrated in ventilation systems for residential sector
- Demonstration activities for large solar cooling packaged systems (more than 100 kW) => cost reduction and guarantee results. Application: industry, cooling networks and large buildings.
- Quality assurance measures for solar cooling (T48 SHC-IEA), among others:
 - Automated failure detection & monitoring
 - Systems testing & characterization
 - > Control strategies optimization

Quality assurance & support measures for Solar Cooling

Duration: 3,5 years (October 2011 – March 2015)

Subtask A: Quality procedure on component level

Subtask B: Quality procedure on system level

Subtask C: Market support measures

Subtask D: Dissemination and policy advice

PARTICIPATING COUNTRIES: Australia, Austria, Canada, Belgium, France, Germany, Italy, Singapore, South Africa, Spain and USA (no claim for completness)

PARTICIPATING MANUFACTURERS AND COMPANIES: Aiguasol, Climatewell, Industrial Solar GmbH, Invensor, Sortech, SOLEM, SOLID, TECSOL, Thermosol (no claim for completness)

Conclusion & outlook

- Solar heating and cooling (SHC) systems will play a significant role in our future energy system
- They provide an energy saving solution on the demand side without negative (possibly positive) impact on the electricity grid
- Main challenge is to assure high quality of installations in broad market
- From technology companies toward sales companies & powerful lobbies...

Thank you for your attention !!! daniel.mugnier@tecsol.fr

