

IEA TASK 38 FU

2011-03-28 Paris

Sabine Putz s.putz@solid.at

S.O.L.I.D. Portfolio

Large Scale Solar Thermal Plants:

- Project Development
- Engineering
- Turnkey Solutions for several 1000m²
 Solar Cooling, Solar Process Heat and Cold, SDH, DHW
- Operation & Maintenance
- Finance (ESCo)
- Research & Development

R&D @ S.O.L.I.D.

- Exchange and extend know-how in cooperation with universities (theory) and business (practice)
- Improvements to existing products and steady development new products
- Partner and co-ordinator in national and international funded R&D projects

Current R&D Project Topics:

- Automated solar system control
- Solar cooling applications
- SC & SH for industrial processes
- Solar District Heating
- Solar thermal in tropical climates
- Solar Energy Contracting

Flat Plate Collectors

- ökoTech
 - Manufacturing Department of S.O.L.I.D.
 - Collectors are built to order
 - Specializes in large scale thermal collectors manufacturing – up to 18m2
 - Advantages
 - Higher energy output
 - Easier and faster installation
 - Less connections and pipings

Why Large Flat Plates?

SMALL Collectors vs. Large Collectors

- 3	m ²
	- 3

Absorber Area: 80%

k-Value: 5-8 W/m²K

Media Flow: discontinuous Flow Rate

→ up to 50% less Efficiency

14 m²

92 % ≈ 10 % more Energy Output

 $3 \text{ W/m}^2\text{K} = \text{high } \text{T} = \text{less heat losses}$

constant Flow Rate

References 2011

- Sheik Zayed Desert Learning Center (UAE/AI Ain)
- Solar Cooling
- Commissioning 2011
- Cooling power 350 kW
- Collector area 1100 m²
- Expected Solar yield: 825 kWh/m²/year

References 2011

- UWCSEA (Singapore)
- Solar Cooling and DHW
- Operating August 2011
- Cooling power 1.5 MW
- Collector area 4000 m²
- Expected Solar yield:

580 kWh/m²/year

Main Interests Task 38 FU

- Exchange of experience with other SC constructors
- Quality and performance improvement of own installations (especially regarding climates with damp heat)
- Certification, labelling SC
- Finance (ESCo) for SC
- District Cooling feed in tariffs
- Solutions for building integration of large collectors
- Active stakeholder training & dissemination (authorities, financiers, political agencies, funding agencies etc.)

Relevant R&D Projects

- Subtask Leader IEA Task 45, Subtask C "Systems"
- SC Monitor and SolarCoolingOpt
- IP-Solar <u>www.ip-solar.com</u>

Automated failure detection and monitoring

- **High Combi** Optimization efficiency SC; DEMO
- BioSolEsco
- SDH-TakeOff

Work Plan Inputs

- Large scale solar cooling turnkey solutions experience best practise and system design
- ESCo contracting experience
- Market experience especially in Asia, USA, Middle East
- Monitoring of SC, automated failure detection
- Possibility to monitor a plant for TASK 38 FU at TASK 38 monitoring specifications (level a, b, c)
- Active work in all tasks, but essentially in subtask b and c

Thank you!

IEA TASK 45

Large solar heating/cooling systems, seasonal storages, heat pumps

- SUBTASK A "Solar collectors for large systems:"
- Improve cost / performance ratio
- Secure long life time
- SUBTASK B "Seasonal storages"
- Reduce cost of the "expensive concepts
- Increase durability / maintenance cost / performance of the "cheap concepts"
- SUBTASK C "Systems" (> 0.5MW; > 700m² collector)
- Optimize performance of systems → analysing control strategies and the right combination of solar thermal, heat pump, seasonal storage for SDH and SDC
- Operation strategies, minimize maintenance and operation cost
- Financing issues and contracting

Overlapping TASK 38 FU & TASK 45 SALID

TASK 38 Affected Objectives / Deliverables of TASK 45:

- Provide a good basis for decision makers to decide on investment in large solar systems
- Provide state of the art of simulation tools
- Give models for ESCo services (contracting)
- Give procedures for performance guarantee and check
- Give recommendations for monitoring and checking system output
- Give recommendations for operating strategies