

Venue host

Scientist?

Academic?

Inventor?

Designer <

Engineering Design

The fusion of technical knowledge and creativity

Providing the narrative

Absorption Chiller: Heat input 500kW Single Stage Machine 95 C f, 85 C r

Heating Hot Water supplied by a Steam to Water x plate heat exchanger.

Boiler: Heat Output 175kW Capable of 10 $C^{o}\Delta t$ at 4.2 l/sec

Panel efficiency data

working							
te	mp C	95	95	95			
dt		FP	ET	MCT			
	10	78.00%	76.00%	75.00%			
	20	75.00%	74.00%	74.00%			
	30	72.00%	71.00%	74.00%			
	40	68.00%	68.00%	73.00%			
	50	65.00%	65.00%	73.00%			
	60	60.00%	62.00%	72.00%			
	70	52.00%	55.00%	72.00%			
	80	44.00%	50.00%	71.00%			
	90	42.00%	47.50%	71.00%			
	100	40.00%	46.00%	70.00%			
110n/a			44.00%	70.00%			
120n/a			39.00%	69.00%			
130n/a			n/a	68.00%			
140n/a			n/a	67.00%			
150n/a			n/a	66.00%			
160n/a			n/a	65.00%			
170n/a			n/a	64.00%			
180n/a			n/a	63.00%			
	190n,	/a	n/a	62.00%			
	200n,	/a	n/a	61.00%			

Verified Complex Simulation Modelling

Panel Type	Working Temperature	Fluid	Storage
Evacuated Tube	95 C	Water	4000 litres
Greenland systems GL10	0-16)		
Field Collector Area	Absorber area/ module	Efficiency	
250 m2	2.95 m2	33.9% ave annual	l
Field Cost	Cost / module	Number of modules	
\$211,472.52	\$2,517.53	84	
Field Production	Field Yield / m2	Energy / Module	Nett Energy Cost
792.4 GJ/annum	3.169 GJ /m2	9.43 GJ	0.27\$/MJ
220.1 MWhth			
Field peak output	Average field output	Peak flow based on	95.00 C flow

Greenland GL 100-16

The Good Stuff:

- It worked!
- It worked above expectation!!
- Simple and straightforward installation.
- Easy to understand, deploy and maintain

The Iffy Stuff:

- Largely uncontrolled –
 More Sun = more heat = boiling water in storage
- Poor heat rejection when most needed.
- System elements designed purely to obtain RECs

Hindsight is something to look forward to

System Rethinks:

- Load
- Heat Rejection
- Efficiency
- RECs and Storage

Load:

- Redevelopment of the hospital site requires a peak Chilled Water load of 1.2MW
- Profile of the load matches the solar energy profile
- Desire not to exceed the current site electrical maximum demand

Heat Rejection:

 Utilise cooling towers. Common practice element for heat rejection at this location.

Efficiency:

- Exploit the higher efficiency of MCT panels to produce hotter water
- Run through a Double Effect Absorption Chiller

RECs and Storage.

- Avoid using storage for hot water but still look to claim RECs
- Store chilled water for peak lopping

MCT Panels:

- Chromasun
 Funding Bid
- Number Panels limited by physical installation space
- 265 MCT Panels

Australian Solar Institute Round 3 Funding Application

Chromasun Pty Ltd

ABN; 80 130 851 553 36 Clarence St., Penshurst, NSW, 2222, Australia 1050 N 5th St, San Jose, CA 94306, USA

Email: info@chromasun.com Website: www.chromasun.com

Only relevant data is useful.

Most useful Information is not about the Panel.

- How is it delivered?
- What are each of the parties expected to do?
- How is it Controlled?
- Certification.

- 1. Scalability applies only to the output of the panel
- 2. Distinguish between theory and practice.
- 3. Question everything including the data.
- 4. For higher temperature systems the cost of plant and materials is greater than the cost of the panels.
- 5. Change what is being made not what is commonly built.
- 6. Buy lots of pants+-

