Solar cooling systems utilizing concentrating solar collectors - An overview

O. Ayadi – M. Aprile – M. Motta

Dipartimento di Energia, Politecnico di Milano

San Francisco, 9-11/7/2012
Structure

- Concept
- Practical benefits
- Common design issues
- Recent installations:
 - Examples
 - Classification
- Electrical SEER
- Conclusion
Concept

- Increasing driving temperatures \(T_H \) can lead to:
 - Higher thermal COPs \(\frac{Q_L}{Q_H} \)
 - Higher temperature lifts (refrigeration)
 - Higher irreversibilities

\[
COP = f_{Carnot} \frac{T_L}{T_H} \frac{T_H - T_M}{T_M - T_L}
\]
Practical benefits

- Higher COP \Rightarrow Less heat input at generator
 - Less collector area per unit of cooling (kW)
 - Smaller HRD, less parasitic energy
- Decrease in T_L \Rightarrow refrigeration with high temperature lifts
- Decrease in f_{Carnot} \Rightarrow lower parasitic energy in heat rejection, dry cooling

```
HRD
```

```
SCF
```

```
TDC
```

```
1 + \text{COP}^{-1}
```

```
1
```

DE
LiBr H2O wet cooled
SE GAX H2O NH3 dry cooled
Common design issues

- Common design issues (besides the selection of a suitable chiller type)
 - Concentrating collectors
 - Heat transfer fluid (HTF)
 - Heat storage Vs direct coupling
 - Hot Vs Cold backup

Collector	HTF	Storage	Backup
stationary or sun tracking reflectors (PTC, Fresnel) | water | pressurized or atmospheric tank or direct coupling cold storage | Hot or cold backup
steam | oil
Recent installations

- First demonstration in 1878
- Prototypes: 1950 ÷ 1990
- New growth starting with 2004...

DE LiBr water

SE water ammonia
Recent installations

- Solar air conditioning (Dalman / Turkey - Hotel)
 - PTC collectors 360 m²
 - Cold backup

- Cooling tower:
 - 27°C to 35°C
 - 7°C to 12°C
 - 140 kW

- Steam generator:
 - 150°C to 170°C

- Double effect LiBr water:
 - 4÷7 bar
 - 7°C

- AC:
Recent installations

- Solar industrial refrigeration (Grombalia / Tunisia - Winery)
 - Fresnel collector 88 m²
 - Driving temperature range: 180 ÷ 160 °C (press. water)
 - Brine temperature range: -10 ÷ -5 °C
 - Air cooled water ammonia GAX chiller (12 kW) + Cold backup
Recent installations

- Classification (based on existing installations)

- Heat transfer fluid: pressurized water in nearly all plants
Electrical SEER

- Expected SEER (theoretical, assuming correct design and control)
Conclusion

- Practical benefits deriving from higher driving temperatures in TDC applications: lower collector area, lower parasitic consumption, refrigeration with high temperature lift, dry instead of wet cooling
- Increasing number of installations using medium temperature collectors, both PTC and Fresnel, growing since 2004
- The concept has been effectively applied: SE dry cooled for AC or R, DE wet cooled for AC only
- Limited choice of market available chillers suitable for the considered applications
- Potentially attractive SEER in all applications, assuming correct design and control
Thank you for your attention!