Large Scale Solar AC System Project

China Singyes Solar Technologies Holding Ltd.

Green Building Research Center

Dr. Junyi Tan March 27, 2015
1. Brief introduction of Singyes Solar
1. 1 Singyes Solar-Leading a low carbon economy in china

- Founded in 1990; listed in HK stock market in 2009
- More than 2000 engineers, corporation income >5 billion in 2014
1.2 Singyes Solar Manufactory Plant in Hunan

The world’s largest rooftop solar power station (20.8 MW) & 480KW Solar AC System built in Singyes Hunan Plant in 2012.
2. Working Principle of Singyes Solar AC System
2.1 Project overview

Location: Xiangtan · Hunan.
Average annual temp. is about 17°C
Average annual solar radiation : 4030 MJ/m².

Detail information of solar AC system:

<table>
<thead>
<tr>
<th>Type</th>
<th>AC Area</th>
<th>Cooling load</th>
<th>Heating load</th>
<th>Hot water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhibition Hall</td>
<td>4,700 m²</td>
<td>480 kW</td>
<td>390 kW</td>
<td>/</td>
</tr>
<tr>
<td>Office Rooms</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Restaurants</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Dormitory</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>30T/day</td>
</tr>
</tbody>
</table>
2.2 Singyes Solar AC System’s Working Principle

Evacuated-tube solar collectors

- Hot water tank
- Absorption chiller 1
- Absorption chiller 2
- Cooling tower

Heating mode

- User Water tank
- AC terminals

Cooling Mode
2.3 Components of Singyes Solar AC System:

① **Heat pipe evacuated-tube solar collectors**

<table>
<thead>
<tr>
<th>Specifications of the solar collectors</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working temperature</td>
<td>50~90°C</td>
</tr>
<tr>
<td>Installation area</td>
<td>1,600 m²</td>
</tr>
<tr>
<td></td>
<td>256</td>
</tr>
</tbody>
</table>

Evacuated-tube solar collectors
2.3 Components of Singyes Solar AC System:

② Two LiBr Absorption chillers

<table>
<thead>
<tr>
<th>Cooling Capacity of Absorption Chiller</th>
<th>Auxiliary energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libr Absorption chiller 1</td>
<td>230kW</td>
</tr>
<tr>
<td>Libr Absorption chiller 2</td>
<td>250kW</td>
</tr>
<tr>
<td></td>
<td>Natural gas</td>
</tr>
</tbody>
</table>

Absorption chiller 1

Absorption chiller 2
2.3 Components of Singyes Solar AC System:
③ Monitoring and control devices

Real-time monitoring system
2.3 Components of Singyes Solar AC System:
④ Air terminal modules

- Embedded fan coils in exhibition hall
- Embedded fan coils in restaurants

Air terminals in the office
3. Performance of Singyes Solar AC System
3.1 Performance Data Analysis:

(1) Solar Irradiance VS. Driven Hot Water Temp.

Temperature of driven hot water is directly proportional to solar irradiance with delay.
3.1 Performance Data Analysis:

(2) Chiller’s Cooling Output VS. Driven Hot Water Temp.

The chiller’s output increased dramatically when the driven hot water temp. > 70°C.
3.1 Performance Data Analysis:

(3) Chiller’s Efficiency VS. Driven Hot Water Temp.

The average efficiency of the chiller is about 0.6 in the typical summer day.
3.2 Singyes Solar AC System Running Cost
(Compared with the conventional system)

<table>
<thead>
<tr>
<th>Seasons\Running cost (¥)</th>
<th>Singyes Solar AC system</th>
<th>Conventional system</th>
<th>Cost Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer (150 days) : 480 kw cooling load</td>
<td>121,300</td>
<td>199,400</td>
<td>78,100</td>
</tr>
<tr>
<td>Winter (120 days) : 390 kW heating load</td>
<td>82,200</td>
<td>105,700</td>
<td>23,500</td>
</tr>
<tr>
<td>Spring and Autumn (90 days) : hot water 30T/day</td>
<td>40,000</td>
<td>122,500</td>
<td>82,500</td>
</tr>
<tr>
<td>Annual cost</td>
<td>243,500</td>
<td>427,600</td>
<td>184,100</td>
</tr>
</tbody>
</table>

The annual cost Y

![Bar graph showing cost comparisons between Singyes Solar AC System and Conventional system](image)
3.3 Performance Conclusions

- **Chiller efficiency** (driven hot water temp):
 The chiller have a higher efficiency when driven hot water temp. >70 °C.

- **Effective factor** (solar radiation):
 Building a larger hot water storage tank may decrease the effective factor of solar radiation, which can make the system working more stable.

- **Auxiliary energy** (natural gas):
 Increasing the solar collectors’ area may decrease the gas consumption and the running cost.
3.4 Advantages of the Solar AC System

- **Environmental friendly:**
 Non-freon system, decrease the Greenhouse effect

- **Low running cost:**
 Can supply heating in winter, supply cooling in summer, supply the hot water in the other seasons by mostly using the solar energy.

- **Good seasonal adaptability:**
 Cooling and heating capacity of the system is directly proportional to the solar radiation
3.5 Limitations for promotion of the Solar AC System

- High initial investment:
 long payback period

- Limited building installation areas for the solar collectors:
 higher running cost

- Low absorption chiller’s running efficiency:
 can not fulfill the user’s cooling and heating load
4. Prospects for Solar AC Development
Prospects for the Solar AC System Development

- High efficiency solar collectors;
- High efficiency chillers in low driven temperature;
- Low cost phase change material for energy storage.
The End
Thank you!