Chinese Solar Cooling Conference 2015

Large Scale Solar AC System Project

China Singyes Solar Technologies Holding Ltd. Green Building Research Center Dr. Junyi Tan March 27, 2015

TE

1, Brief introduction

1. 1 Singyes Solar-Leading a low carbon economy in china

Founded in 1990; listed in HK stock market in 2009
More than 2000 engineers, corporation income >5 billion in 2014

The world's largest rooftop solar power station (20.8 MW) & 480KW Solar AC System built in Singyes Hunan Plant in 2012.

2 .Working Principle of Singyes Solar AC System

2.1 Project overview

Location: Xiangtan ·Hunan. Average annual temp. is about 17°C Average annual solar radiation : 4030 MJ/m².

Detail information of solar AC system :

Туре	AC Area	Cooling load	Heating load	Hot water
Exhibition Hall				/
Office Rooms	4,700 m ²	480kW 390kW		/
Restaurants				/
Dormitory	/	/	/	30T/day

2.3 Components of Singyes Solar AC System:① Heat pipe evacuated-tube solar collectors

2.3 Components of Singyes Solar AC System:(2) Two LiBr Absorption chillers

2.3 Components of Singyes Solar AC System:③ Monitoring and control devices

2.3 Components of Singyes Solar AC System:(4) Air terminal modules

F

Air terminals in the office

3. Performance of Singyes Solar AC System

SE

3.1 Performance Data Analysis:

(1) Solar Irradiance VS. Driven Hot Water Temp.

Temperature of driven hot water is directly proportional to solar irradiance with delay

3.1 Performance Data Analysis:

(2) Chiller's Cooling Output VS. Driven Hot Water Temp.

The chiller's output increased dramatically when the driven hot water temp. $> 70^{\circ}$ C.

3.1 Performance Data Analysis:

(3) Chiller's Efficiency VS. Driven Hot Water Temp.

3.2 Singles Solar AC System Running Cost (Compared with the conventional system)

Seasons \Running cost (¥)	Singyes Solar AC system	Conventional system	Cost Saving
Summer(150 days) : 480 kw cooling load	121,300	199,400	78,100
Winter(120 days) : 390 kW heating load	82,200	105,700	23,500
Spring and Autumn (90 days) : hot water 30T/day	40,000	122,500	82,500
Annual cost	243,500	427,600	184,100

3.3 Performance Conclusions

Chiller efficiency (driven hot water temp)

The chiller have a higher efficiency when driven hot water temp. >70 °C.

Effective factor (solar radiation) :

Building a larger hot water storage tank may decrease the effective factor of solar radiation, which can make the system working more stable.

Auxiliary energy (natural gas):

Increasing the solar collectors' area may decrease the gas consumption and the running cost.

3.4 Advantages of the Solar AC System

SE

Environmental friendly:

Non-freon system, decrease the Greenhouse effect

Low running cost :

Can supply heating in winter , supply cooling in summer, supply the hot water in the other seasons by mostly using the solar energy.

Good seasonal adaptability:

Cooling and heating capacity of the system is directly proportional to the solar radiation

3.5 Limitations for promotion of the Solar AC System

- **I** High initial investment :
 - long payback period
- **<u><u></u>** Limited building installation areas for the solar collectors:</u>
 - higher running cost
- **S** Low absorption chiller's running efficiency :

can not fulfill the user's cooling and heating load

4. Prospects for Solar AC Development

Prospects for the Solar AC System Development

- High efficiency solar collectors;
- High efficiency chillers in low driven temperature;
- Low cost phase change material for energy storage.

