IEA SHC Task 48 6th expert meeting

Quality assurance and support measures for Solar Cooling

PISTACHE – Presizing tool for solar cooling, heating and DHW systems

Daniel MUGNIER – Kingston, 12/05/2014

www.tecsol.fr

General description of the tool

Presizing tool for solar cooling, heating and domestic hot water production systems

<u>Applications</u> :

- solar cooling, heating and DHW installations
- solar combi+ and large scale systems, w/o back-up systems
- sorption chillers : aB / aDsorption
- collectors : FPC / ETC
- heat rejection : wet cooling tower / geothermal / drycooler

General description of the tool

Main characteristics and functions :

- 12 configuration schemes
- Input : hourly meteo + load file (tab text file)
- Automatic presizing of main components (Pn, Scoll, Vstorage) and default values for parameters
- Database of abso/adsorption chillers and collectors available on the market
- Use of for solar energy : cooling + heating and/or DHW production
- Integrated help, FR and ENGL version

General description of the tool

<u>Output</u>:

- Summary with main installation characteristics
- Monthly energy balance
- Annual performance indicators + their comparison to target values
- Online Graph
- Analysis of the results

Input meteo/load file

tabulated text file saved with *.mgp extension 1st line : name of the column 2nd line : units of the column 3rd line to 8763rd : hourly data beginning the 1st of January

Input meteo/load file

Column name	Units	Nbr of decimal	Legitimate domain	Content
TIME	-	0	[1 ; 8760]	Number of the hour over the year
MOIS	-	0	[1 ; 12]	Number of the month
JOUR	-	0	[1 ; 31]	Number of the day
HEURE	-	0	[1 ; 24]	Number of the hour over the day
Text	О°	1	[-99.9 ; 99.9]	Ambient temperature
Ens_g_hz	W/m ²	0	[0;1200]	Total horizontal solar radiation
HR	%	0	[0 ; 100]	Ambient relative humidity
Tef	°C	1	[0.0 ; 100.0]	Fresh water temperature for DHW
Bchauff	kWh	1	[0.0 ; 999 999.9]	Building heating load
Bclim	<mark>kW</mark> h	1	[0.0 ; 999 999.9]	Building cooling load
Becs	kWh	1	[0.0 ; 999 999.9]	DHW net demand

Conclusion : PISTACHE

- is easy to use due to automatic pre-sizing function
- is convenient for a large number of applications, to evaluate the feasibility of a project
- can also be used to **compare real performances** of an installation to predicted ones
- **is validated** thanks to comparison between calculations and existing installation monitoring data

Latest work : last debug, numerical validation (PIMENT Lab – Universitiy of La Réunion, FR)

...and experimental validation for other countries (IEA SHC Task 48 experts)

To know more about PISTACHE....

Nowag J, Boudéhenn F & AI ; Calculation of performance indicators for solar cooling, heating and domestic hot water system ; Energy Procedia n° 30 ; 2012 ; p937-946.

→ definition of the performance indicators

Le denn A, Boudéhenn F & AI ; A simple predesign tool for solar cooling, heating and domestic hot water production systems ; Building simulation 2013, August 25-28, Chambéry, France

presentation of the tool and validation on 4 SHC installations

Semmari H, Marc O & AI ; Sensitivity analysis of the new sizing tool "PISTACHE" for solar heating, cooling and domestic hot water systems ; SHC 2013, September 23-25, Freiburg, Germany

➔ presentation of sensitivity analysis and validation on 1 solar cooling installation (RAFSOL)

OTTI Conference : « System design : design tools, simulation, engineering Par 1 » Thursday, Sept 26th, 2013 (14h30)

ACKNOLEDGMENT

This work has been supported by French Research National Agency (ANR) through Habitat intelligent et solaire photovoltaïque program (project MEGAPICS n° ANR-09-HABISOL-007)

Thank you for your attention

Contact : <u>francois.boudehenn@cea.fr</u> <u>amandine.ledenn@tecsol.fr</u>

