DHW/Cooling hybrid strategy for solar cooling:

Practical successful monitoring results in South of France TECSOL

D. Mugnier (TECSOL)

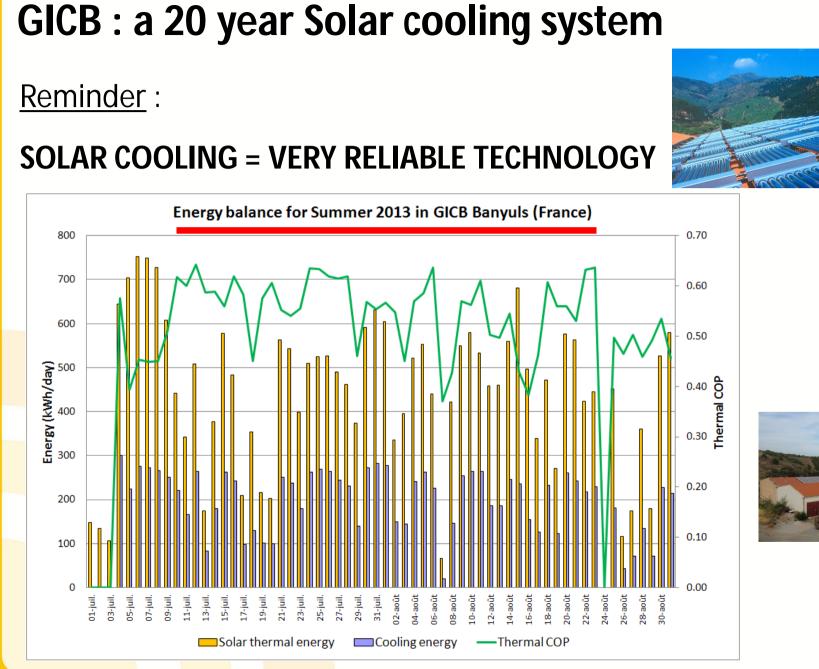
www.tecsol.fr

Introduction

* Long history in France for solar cooling (1980-2013)

However, special national conditions for solar cooling :

- **Mild** climate (cooling season especially in South of France)
- Low energy price (one of the lowest in the World for electricity)
- Mitigated feedback until now on performance levels (technical dysfunctionning, low economical interest, lack of providers)
- \Rightarrow Important need to structure the sector & get Full Best practice


Big challenge : which system/project to follow up the story in 2013?

2013

- Bad Krozingen 25-27th Sept.

OTTI SAC

2013 Bad Krozingen 25-27th Sept. OTTI SAC

Introduction

Solution to create a dynamics for the sector :

- Emergence Program (high incentive against guarantee of results)
- Extend the solar ressource use as much as possible
 ⇒ Idea to go to a mix DHW (instead of heating) + cooling system
- Find sites where the system integration is possible including a simple scheme and simple working conditions
- Find motivated customers for such an application

One example : « Amiral block » Solar DHW/Cooling project in Montpellier !

Targeted building description

- Montpellier Heating and System net utilities
- => System owner
- TECSON TECSOL : engineering company

Building A view

Existing Building block in ZAC Jacques Coeur in Port Marianne area

(Montpellier, France, built in 2010)

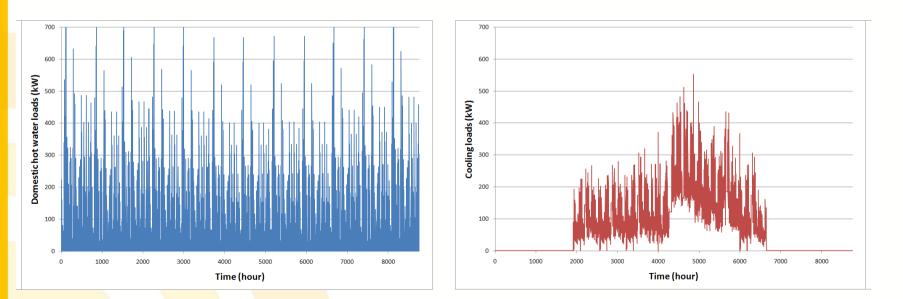
2 parts : building A & B (mini district)

Building A : 11 000 m² for offices and shops Building B : 10 600 m² with 167 dwellings

Buildings situation

2013

OTTI SAC – Bad Krozingen 25-27th Sept.


Load

Load : real monitored data from 2010 to 2011

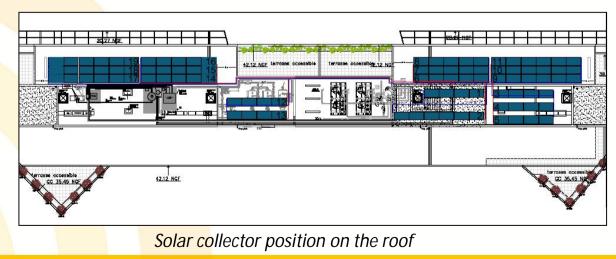
```
DHW + cooling = 46 \text{ kWh/m}^2.y => 1 GWh/y
```

DHW load on a yearly basis

Heating + cooling equipements : compression chillers + gas burners (900 kW) (700 kW)

Cooling load on a yearly basis

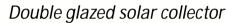
OTTI SAC – Bad Krozingen 25-27th Sept. 2013


Load & system strategy

Sizing strategy :

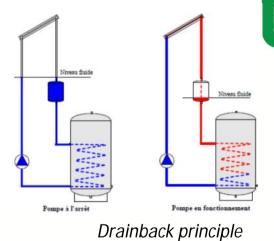
- available place on the roof
- simplicity & maximum yield

- \Rightarrow nearly 500 m² available on different locations on the Block A roof => 240 m² solar collector
- DHW only in Winter + cooling (if possible +DHW) in Summer

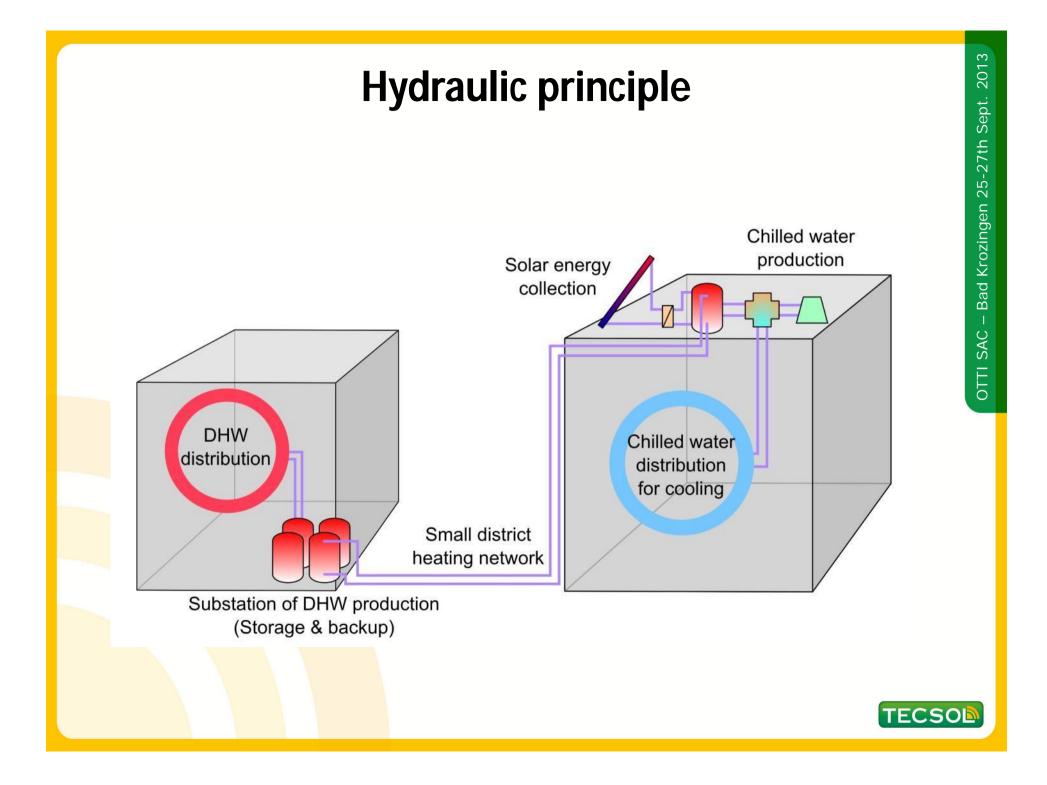


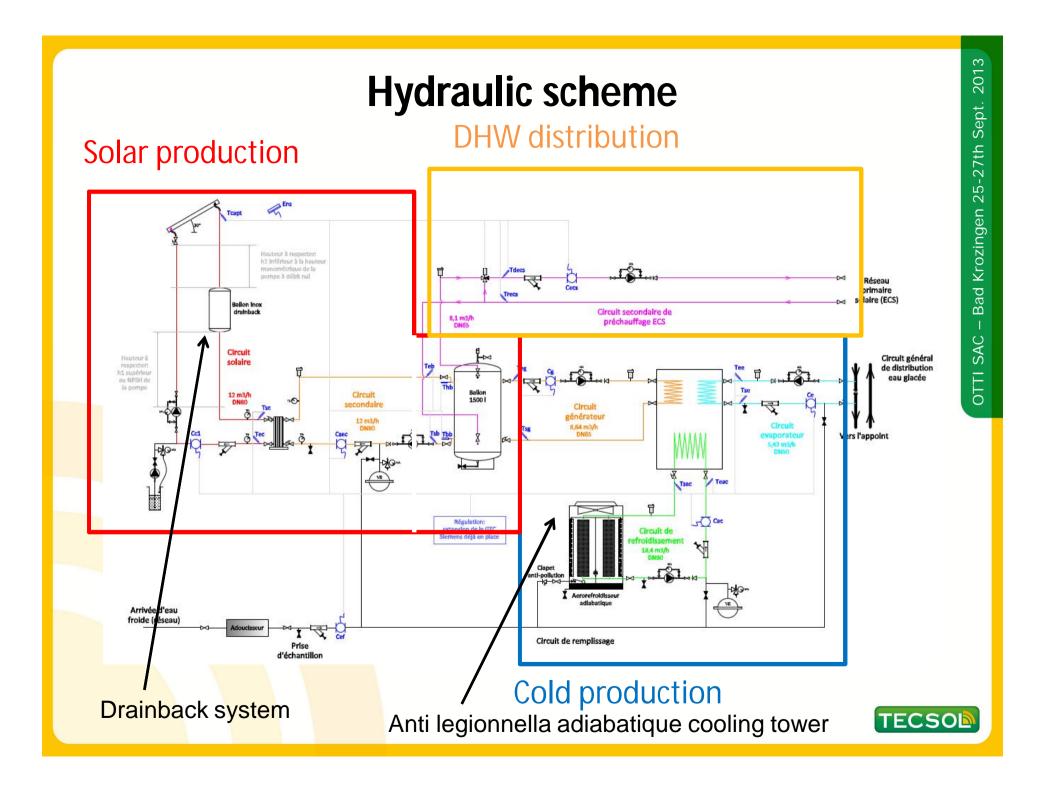
System description

- 240 m² double glazed flat plate collectors
- one 35 kW absorption chiller



- solar circuit in drainback mode (with water glycol + HX)




Solar collector fields in drainback mode

- one 1500 liter hot buffer storage tank
- DHW preheating
- (+ 10 m3 DHW additional storage capacity in Building B for dwellings)

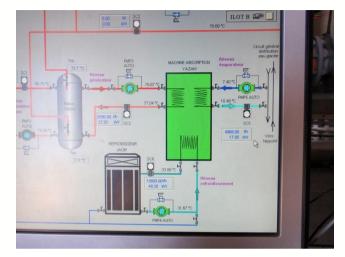
TECSO

Lessons learnt from installation & running

• Architectural issues :

Existing building with a lot of caution in the architectural integration proces

- •Installer skills : very few installers skilled for both absorption / solar / control => learning process and high importance of engineering coordination
- Building in use : preventing any disturbance to companies/organizations working in the lower floors of the building
- Real cooling load : in office buildings in August, the cooling load can become very very low (some tens of kW against some hundreds)



* Nominal working conditions for domestic hot water production since May 2012

* Excess of available heat in sunny days : perfect safety functionality of the Drainback system against overheating

- * Short test sequences :
- checked capacity to run properly the chiller
- power balance around the chiller :
 - Generator : 28 kW 80/77°C
 - Evaporator : 18 kW 7,5/10,5 °C
 - Heat rejection : 46 kW 31,5/34°C

Screen snapshot showing working system

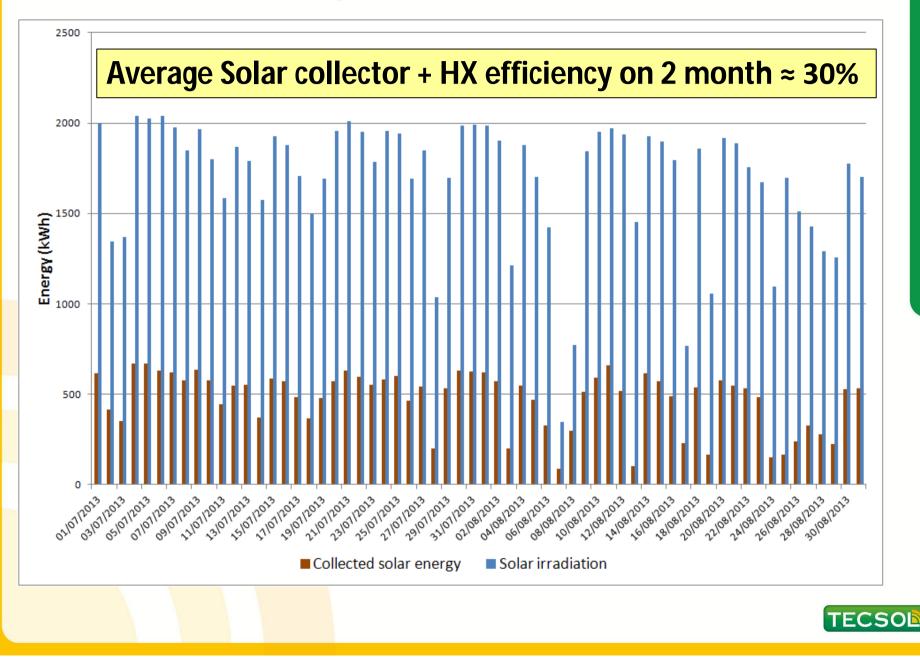
Monitoring results in DHW mode

DHW monitoring results for a Winter day

Date	18 march 2013	
Energies		
Available solar energy	1491,28	kWh
Collected solar energy (secondary circuit)	563,48	kWh
Solar DHW distributed (after the buffer tank)	494,17	kWh
Electrical energy consumed	12,29	kWh
Ratios et calculations		
Collector & Heat exchanger yield	37,78	%
Buffer tank yield	87,70	%
Installation yield (from solar to DHW)	33,14	%
Electrical COP	40,22	-

Energies and energies ratio for March 18th 2013

The installation performances on a sunny day in March are quite good with **an electrical COP reaching 40**

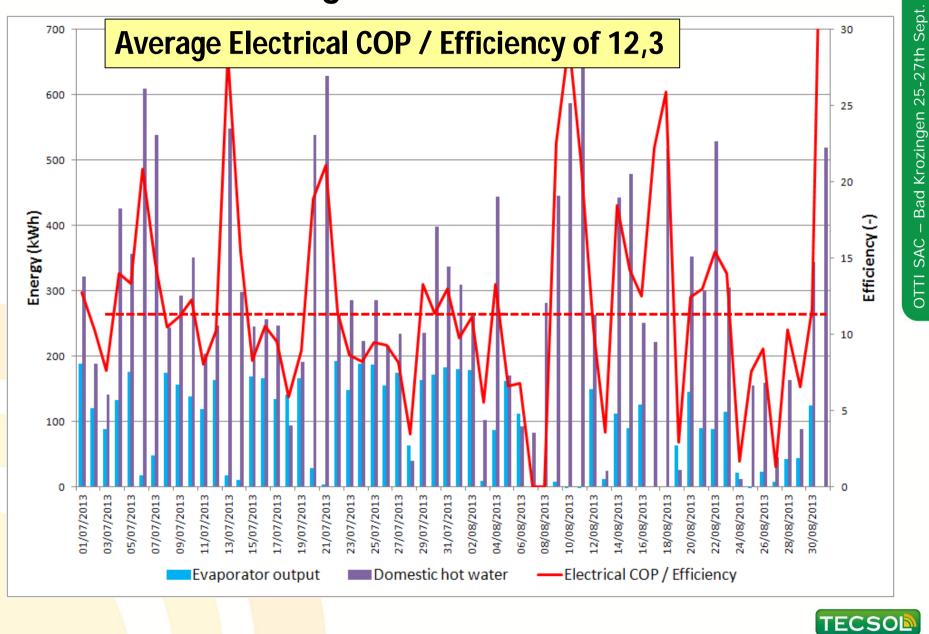


Monitoring results for Summer 2013

2013

Bad Krozingen 25-27th Sept.

OTTI SAC



Monitoring results for Summer 2013

OTTI SAC – Bad Krozingen 25-27th Sept. 2013

Monitoring results for Summer 2013

2013

Summary for the 2013 cooling season

	Unit	Value
Solar irradiation	kWh	104 000
Collected solar energy	kWh	30 000
Generator input	kWh	9 800
Evaporator output	kWh	6 000
Domestic hot water	kWh	18 000
Electricity consumption	kWh	2 000
Thermal COP	(-)	0.60
Electrical Efficiency /COP	(-)	12.2
Water consumption (m3)	m3	60
• • •		

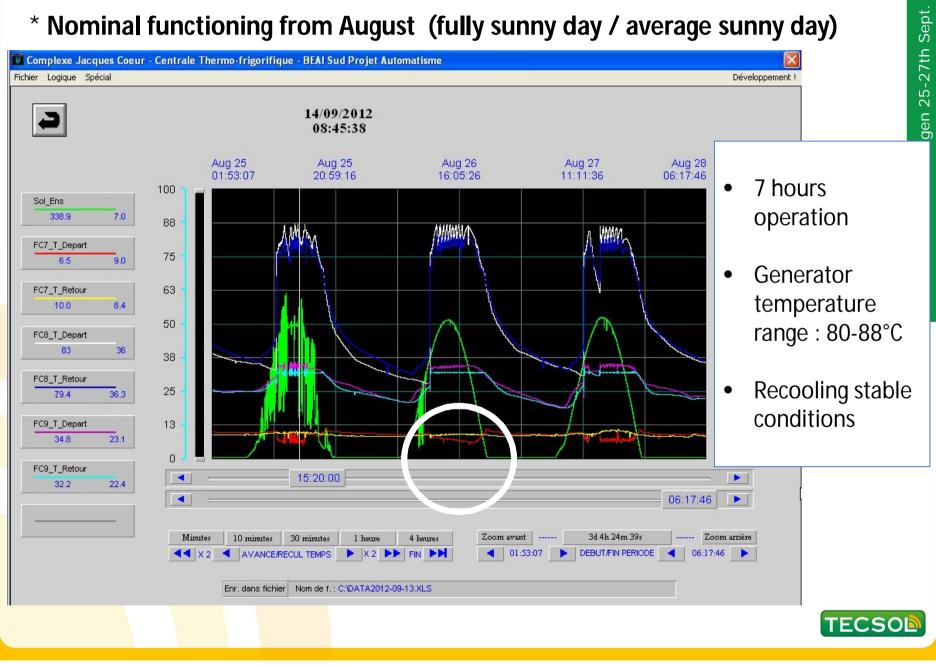
Big advantage of this system : complementarity between cooling & DHW function

Simplicity of functionning : no issue on the control (Cooling -> DHW)

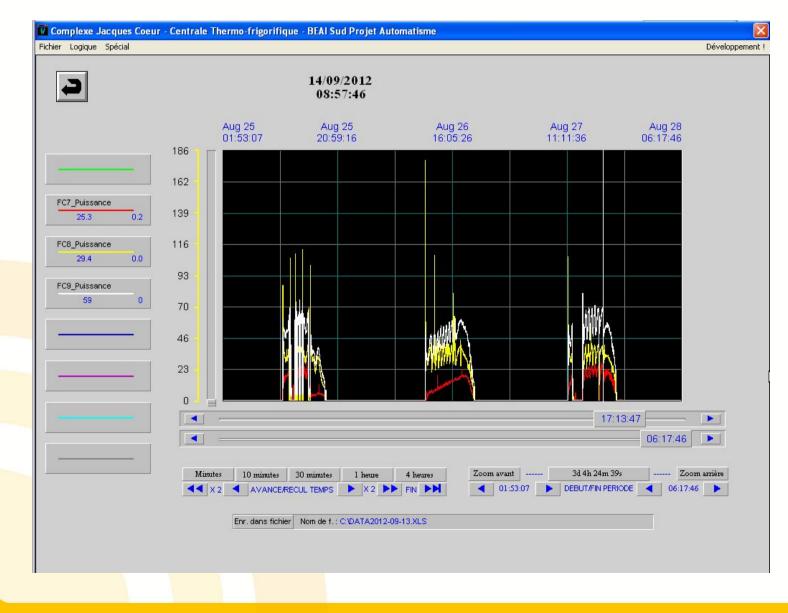
OTTI SAC – Bad Krozingen 25-27th Sept. 2013

Conclusions

- Project running since May 2012
- Very learnful feedbacks
- Complete monitoring system permitting full feedback on energy performance level
- Very interesting 2013 cooling season with high electrical COP
- Interesting new concept for DHW/solar cooling :
 - Maximal usability of solar ressource & simplicity ot the system
 - Economical optimum (gains for DHW + Cooling production)
 - No risk of regular oversizing
 - **Drainback strategy** in case of dysfunctionning
 - First application of the French Incentive Emergence Program
 - One case of mini Solar District Heating/Cooling system TECSON


Thanks for your attention !

<u>Contact</u> : Daniel Mugnier, TECSOL daniel.mugnier@tecsol.fr



* Nominal functioning from August (fully sunny day / average sunny day)

2013

* Monitoring campaign ongoing (after cooling season, heating season now)

TECSOL

* DHW monitoring results for a Winter period

Date	9 days period	
Energies		
Available solar energy	9922,98	kWh
Collected solar energy (secondary circuit)	3569,40	kWh
Solar DHW energy distributed (after the buffer tank)	3345,92	kWh
Electrical energy consumed	78,16	kWh
Ratios et calculations		
Collectors & Heat exchanger yield	35,97	%
Buffer tank yield	93,74	%
Installation yield (from solar to DHW)	33,72	%
Electrical COP	42,81	-

Energies and energies ratio for a 9 days period in March 2013

* DHW monitoring results for a Winter period

Energies and electrical COP for a 9 days period in March 2013

Economics

Total cost of the project (cooling + DHW) : 330 000 € (w/o eng.)

Public funding available for the project : 50%

Final investment cost for the customer : ≈ **165 000**€

Savings :

- For cooling: * electric central heat pumps with average electrical SEER = 2

* electricity price = 0,04664 €/kWh

- For DHW production : * gas boiler (average $\eta = 80\%$)

* gas price = 0,04182 €/kWh

Annual gross saving of ≈ 8 000 €/year

Annual actualized saving during 20 years : 11 100€/year

(average 6% / year increase for energy price)

OTTI SAC – Bad Krozingen 25-27th Sept. 2013

Economics & Environment

ROI of the project not very performing (≈ 15 years) ...BUT

-Guarantee for the customer of performances (Emergence system)

-Considered as a Demo project (experiment + no profitable project (cover total coast on system life)

CO2 savings from this solar cooling/DHW installation. <u>Hypothesis</u>:

- For electricity: 120 g of CO2/kWh
- For gas: 273 g of CO2/kWh

=> 40 tons CO2 / y

Equivalent to 25 cars travelling 11 500 km/y

1 car making 2 500 km/y produces **350 kg** CO2

Expected results

	DHW production (kWh)	Cooling production (kWh)	Electric consumption (kWh)	Solar productivity* (kWh/m²)	Electrical COP (-)	Solar fraction (%)
January	2 476	0	256	10,3	9,7	7,7 %
February	4 694	0	371	19,6	12,7	19,1 %
March	11 073	0	566	46,1	19,6	22,2 %
April	16 252	228	723	68,7	22,8	17,3 %
May	18 556	1 843	892	85,0	22,9	18,7 %
June	14 002	3 033	938	71,0	18,2	16,8 %
July	12 083	7 348	1329	81,0	14,6	9,8 %
August	11 583	6 281	1207	74,4	14,8	11,6 %
September	7 939	1 340	661	38,7	14,0	9,2 %
October	8 896	0	547	37,1	16,3	25,6 %
November	3 450	0	293	14,4	11,8	12,7 %
December	2 077	0	234	8,7	8,9	6,6 %
TOTAL	113 080	20 073	8 017	554,8	16,6	13,9 %

* Solar productivity: Calculated in winter as the distributed hot energy divided by the collector surface, and in summer the distributed cold energy is divided by the collector surface but also by the thermal COP of the chiller.

Emergence program : mini annual thermal performance levels to reach

- Solar yield is estimated to 554,8 kWh/m².year >> 350 kWh/m².year
- Electrical COP is estimated to 16,6 >> 5

 \Rightarrow **Project eligible** to the Emergence funds

