

Franck Lucas

University of Réunion Island Laboratory of Physic and Mathematical Engineering for
Energy and Environment (PIMENT)

Location: Reunion Island (southern hemisphere !!!— tropical area: Africa!!!)

Main research topics:

Demand side management (DSM), renewable energy, simulation and control of energy systems, environmental and urban studies

Four research groups:

- Team Applied Mathematics for complex systems
- Team Buildings Physics
- Team Energy systems and Renewable energy
- Team Environmental engineering and urban studies

Keypoints:

- 23 permanent researchers (6 Profs, 3 A/P, 14 Senior lecturers)
- 11 PhD students
- 14 associate researchers

Team renewable energy and energy systems

- Net Zero Energy Buildings (IEA task 40)
- Solar cooling systems
- Integration of renewable energy systems to buildings
- Ocean energy (thermal and mechanical)
- Integration of renewable energy into the electricity grid

Experimental platforms

- IUT Pilot site in DSM and RE
 - 200 m2 of PV panels
 - Wind turbine
 - PV solar wings
- Real scale monitored systems
 - Solar cooling set-up
 - NZEB (Net Zero Energy Building)
 - Real scale building test cell
- Test cells under control or outdoor conditions (270 m2)
 - 200 m2 of PV panels
 - Small cell building test cells
 - Test bench for solar collectors
 - fully equipped weather station
 - Test cells under controlled conditions
 - Test bench for small air conditioning units

Rafsol installation:

Only cooling

No bacckup

Rafsol installation:

- 4 years of experimental investigations.
- Fully instrumented: Level III for performance evaluation according to task 38 procedure
- Still some improvement to explore :
 - Targets :
 - Electricity consumption of heat rejection loop : > 60%
 - 3 < COPelec< 5 (annual experimental values)
 - Lower operation cost
 - Tracks :

Lower auxiliary energy consumptions

- Adapted components
- Better control strategies

Main interests in the New Task

- Find low energy cooling systems suitable for tropical climate (low heating needs)
- Finding answers everybody's asking on solar cooling: guaranteed energy performance, cost...
- ⇒Interest in : Subtask B
 - Sizing tool
 - Similar work as megapics project
 - Existing models

Main interests in the New Task

- ⇒Interest in : subtask C
 - labeling of existing installation
 - Considering :
 - buildings and systems
 - Maintenance
 - Implementation
 - Behavior of users
 - ...

Issue: defining the global performance through suitable parameters.

Ongoing and new R&D projects related to the New Task

- Previous research program on solar cooling:
 - RAFSOL : full scale solar cooling installation (30kW)
 - ORASOL: French National Research Agency (ANR) program for optimization of solar cooling processes
 - Based on numerical and experimental comparison of 4 solar cooling technologies
 - Task 38: participation on subtask B & C (simulation benchmark and experimental studies)
- Ongoing research program :
 - Megapics (ANR)
- Future research programs :
 - New ANR program (SEED) on :
 - Control strategies
 - Heat rejection

Inputs to the Work Plan

- Experimental set up : Rafsol installation :
 - Fully instrumented
 - Only for cooling
 - In tropical climate
- Results from ORASOL project
- Labeling procedure for conventional AC systems OPTICLIM project
- Validated models :
 - Components and whole installation
 - Simplified and detailed models

