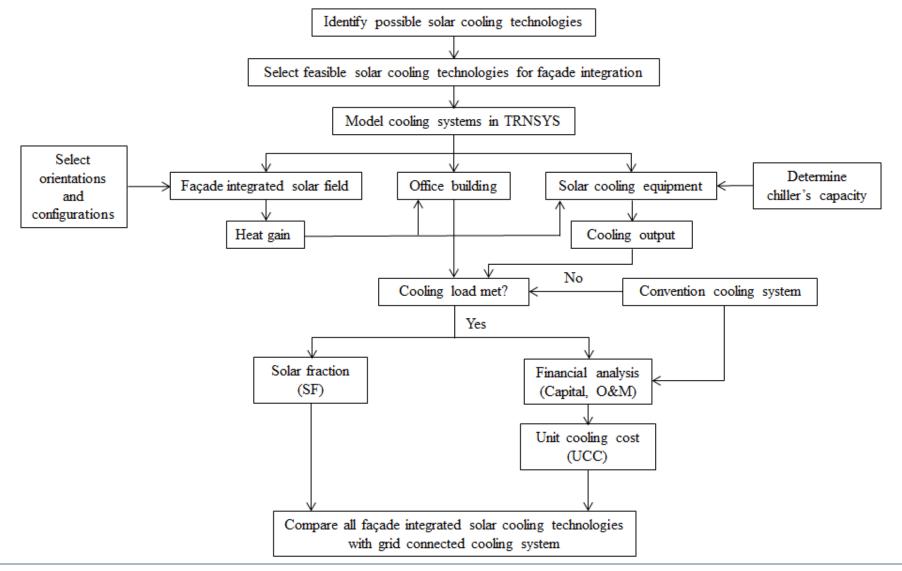


Façade Integrated Solar Cooling Systems

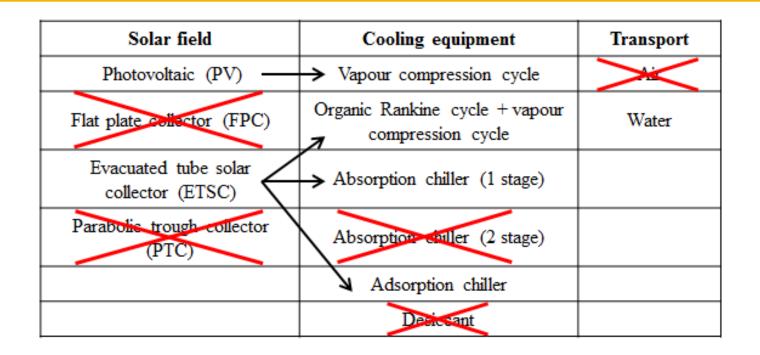
PhD candidate: Dan Wu

Supervisors: A/Prof. Lu Aye, Dr Tuan Ngo & Prof. Priyan Mendis

Renewable Energy and Energy Efficiency Group Melbourne School of Engineering, The University of Melbourne


Aim: to develop an integrated system to enhance the function of façades to utilise solar energy for cooling in office buildings

- To develop façade integrated solar collection systems for cooling generation for commercial office buildings;
- To develop simulation models which can quantify the system performance (e.g. energy gain from solar, cooling load, power output, cooling generation, overall system efficiency);
- To construct an experimental rig for validation of the simulation models for the system developed;
- To optimise the system design and operational parameters for minimum life cycle cost.


Technical and financial analysis

Available options

System overall efficiencies PV panel $(0.15) + VCC (4) = \sim 0.6$ ETSC $(0.5) + ORC (0.1) + VCC (4) = \sim 0.2$ ETSC (0.5) +one-stage absorption chiller $(0.7) = \sim 0.35$ ETSC (0.5) +adsorption chiller $(0.7) = \sim 0.35$

Generator Electric grid Expander Evaporator Façade integrated evacuated tube Cooling Buffer solar collector tower tank Condenser Š Recuperator Compressor Pump Evaporator Condenser 200000 Pump Pump Pump Chilled water Pump

MERIT

MELBOURNE ENGINEERING

RESEARCH INSTITUTE

TRNSYS

- Building, weather data, façade integrated evacuated tube solar collector, pumps and buffer tank;
- Estimating transient cooling load;
- Coupling with GenOpt through interface TRNOPT for optimisation.

Engineering Equation Solver (EES)

- Organic Rankin cycle and vapour compression cycle;
- Thermodynamic model (for working fluid selection);
- Component model (for optimisation studies).

- To achieve the highest overall efficiency, the optimal hot thermal fluid temperature for ORC is recommended to be 95°C;
- In terms of pressure aspect, R134a and R500 are the best fluids;
- RC318 has the most moderate pressure ratio;
- Expander outlet volume flow rate favours R290 the most;
- From an efficiency point of view, R152a with superheating is the most efficient one.

Fluid	Superheating (°C)	η_{th} (%)	η_{Π} (%)	İ _{tot} (k₩)	$\dot{V}_4 ({ m m^3/h})$
R134a	0	6.85	41.69	1.612	6.66
R290		6.59	41.73	1.716	6.00
R227ea		7.15	43.12	1.505	9.55
R152a		7.27	43.09	1.465	6.97
R134a	5	7.29	43.88	1.456	6.09
R290		7.05	43.93	1.541	5.47
R227ea		7.59	45.27	1.363	8.76
R152a		7.78	45.70	1.305	6.36